
ϕπ
FiPy

A Finite Volume PDE Solver Using Python

Daniel Wheeler

Jonathan E. Guyer

James A. Warren

Metallurgy Division

and the Center for Theoretical and Computational Materials Science

Materials Science and Engineering Laboratory

November 5, 2004

Version 0.1

ii

This software was developed at the National Institute of Standards and Technology by employees
of the Federal Government in the course of their official duties. Pursuant to title 17 section 105
of the United States Code this software is not subject to copyright protection and is in the public
domain. FiPy is an experimental system. NIST assumes no responsibility whatsoever for its use by
other parties, and makes no guarantees, expressed or implied, about its quality, reliability, or any
other characteristic. We would appreciate acknowledgement if the software is used.

This software can be redistributed and/or modified freely provided that any derivative works bear
some notice that they are derived from it, and any modified versions bear some notice that they
have been modified.

Certain commercial firms and trade names are identified in this document in order to specify
the installation and usage procedures adequately. Such identification is not intended to imply
recommendation or endorsement by the National Institute of Standards and Technology, nor is it
intended to imply that related products are necessarily the best available for the purpose.

http://www.nist.gov/
http://uscode.house.gov/uscode-cgi/fastweb.exe?getdoc%2Buscview%2Bt17t20%2B9%2B0%2B%2B
http://www.nist.gov/
http://www.nist.gov/

Contents

I Introduction 1

1 Overview 5

2 Installation and Usage 9

3 Theoretical and Numerical Background 17

4 Design and Implementation 25

II Examples 31

5 Diffusion Examples 37

6 Convection Examples 51

7 Phase Field Examples 57

8 Level Set Examples 85

9 Cahn-Hilliard Examples 101

Bibliography 107

Index 109

Contributors 111

iii

iv CONTENTS

Part I

Introduction

1

Introduction Contents

1 Overview 5
1.1 Download and Installation . 5
1.2 Support . 6
1.3 Conventions and Notation . 6

2 Installation and Usage 9
2.1 Privileges . 9
2.2 Prerequisites . 10
2.3 Obtaining FiPy . 12
2.4 Testing FiPy . 13
2.5 Installing FiPy . 13
2.6 Using FiPy . 14
2.7 CVS tags . 14

3 Theoretical and Numerical Background 17
3.1 General Conservation Equation . 17
3.2 Finite Volume Method . 18
3.3 Discretization . 19
3.4 Linear Equations . 21
3.5 Numerical Schemes . 22

4 Design and Implementation 25
4.1 Design . 25
4.2 Implementation . 28

4 INTRODUCTION CONTENTS

Chapter 1

Overview

FiPy is an object oriented, partial differential equation (PDE) solver, written in Python [1], based
on a standard finite volume (FV) approach. The framework has been developed in the Metallurgy
Division and Center for Theoretical and Computational Materials Science (CTCMS), in the Ma-
terials Science and Engineering Laboratory (MSEL) at the National Institute of Standards and
Technology (NIST).

The solution of coupled sets of PDEs is ubiquitous to the numerical simulation of science problems.
Numerous PDE solvers exist, using a variety of languages and numerical approaches. Many are
proprietary, expensive and difficult to customize. As a result, scientists spend considerable resources
repeatedly developing limited tools for specific problems. Our approach, combining the FV method
and Python, provides a tool that is extensible, powerful and freely available. A significant advantage
to Python is the existing suite of tools for array calculations, sparse matrices and data rendering.

The FiPy framework includes terms for transient diffusion, convection and standard sources, en-
abling the solution of arbitrary combinations of coupled elliptic, hyperbolic and parabolic PDEs.
Currently implemented models include phase field [2, 3] treatments of polycrystalline, dendritic,
and electrochemical phase transformations as well as a level set treatment of the electrodeposition
process [4].

The latest information about FiPy can be found at http://www.ctcms.nist.gov/fipy/.

1.1 Download and Installation

Please refer to Chapter 2 for details on download and installation. FiPy can be redistributed and/or
modified freely, provided that any derivative works bear some notice that they are derived from it,
and any modified versions bear some notice that they have been modified.

5

http://www.python.org/
http://www.metallurgy.nist.gov/
http://www.metallurgy.nist.gov/
http://www.ctcms.nist.gov/
http://www.msel.nist.gov/
http://www.nist.gov/
http://www.python.org/
http://www.python.org/
http://www.ctcms.nist.gov/fipy/

6 Conventions and Notation

1.2 Support

FiPy is being actively developed and supported. Please use the tracking system for bugs, support
requests, feature requests and patch submissions. A mailing list is also available. We are also
seeking collaborative efforts on this project.

1.3 Conventions and Notation

FiPy is driven by Python script files than you can view or modify in any text editor. FiPy sessions
are invoked from a command-line shell, such as tcsh or bash.

Throughout, text to be typed at the keyboard will appear like this. Commands to be issued
from an interactive shell will appear:

$ like this

where you would enter the text (“like this”) following the shell prompt, denoted by “$”.

Text blocks of the form:

>>> a = 3 * 4
>>> a
12
>>> if a == 12:
... print "a is twelve"
...
a is twelve

are intended to indicate an interactive session in the Python interpreter. We will refer to these as
“interactive sessions” or as “doctest blocks”. The text “>>>” at the beginning of a line denotes the
primary prompt, calling for input of a Python command. The text “...” denotes the secondary
prompt, which calls for input that continues from the line above, when required by Python syntax.
All remaining lines, which begin at the left margin, denote output from the Python interpreter. In
all cases, the prompt is supplied by the Python interpreter and should not be typed by you.

Warning

Python is sensitive to indentation and care should be taken to enter text exactly as it appears
in the examples.

When references are made to file system paths, it is assumed that the current working directory is
the FiPy distribution directory, refered to as the “base directory”, such that:

examples/diffusion/steadyState/mesh1D/input.py

will correspond to, e.g.:

/some/where/FiPy-0.1/examples/diffusion/steadyState/mesh1D/input.py

Paths will always be rendered using POSIX conventions. Any references of the form:

http://sourceforge.net/tracker/?group_id=118428
http://www.ctcms.nist.gov/fipy/mail.html
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/

7

examples.diffusion.steadyState.mesh1D.input

are in the Python module notation and correspond to the equivalent POSIX path given above.

We may at times use a

Note

to indicate something that may be of interest

or a

Warning

to indicate something that could cause serious problems.

http://www.python.org/

8 Conventions and Notation

Chapter 2

Installation and Usage

The FiPy finite volume PDE solver relies on several third-party packages. It is best to obtain and
install those first, before attempting to install FiPy.

Note

Most of the installation steps will involve a variant on the command:
$ python setup.py ...
In addition to the specific commands given here, further information about each setup.py
script is available by typing:
$ python setup.py --help

2.1 Privileges

If you do not have administrative privileges on your computer, or if for any reason you don’t want
to tamper with your existing Python installation, most packages (including FiPy) will allow you
to install to an alternate location. Instead of installing these packages with python setup.py
install, you would use python setup.py install --home=<dir>, where <dir> is the desired
installation directory (usually “~” to indicate your home directory). You will then need to ap-
pend <dir>/lib/python to your PYTHONPATH environment variable. See the Alternate Installation
section of the Python document “Installing Python Modules” [5] for more information, such as
circumstances in which you should use --prefix instead of --home.

9

http://www.python.org/
http://docs.python.org/inst/alt-install-windows.html
http://www.python.org/
http://docs.python.org/inst/

10 Prerequisites

2.2 Prerequisites

2.2.1 Operating System

FiPy has been developed and tested on the Unix operating systems Mac OS X 10.3 and Debian
Linux 3.0. We welcome reports of compatibility with other systems, along with any steps necessary
to install.

The only elements of FiPy that are likely to be platform-dependent are the viewers. All other
aspects should function on any platform that has a recent Python installation.

2.2.2 Required Packages

Warning

FiPy will not run if the following items are not installed.

Python

http://www.python.org/

FiPy is written in the Python language and requires a Python installation to run. Python comes
pre-installed on many operating systems, which you can check by opening a terminal and typing
python, e.g.:

$ python
Python 2.3 (#1, Sep 13 2003, 00:49:11)
...
Type "help", "copyright", "credits" or "license" for more information.
>>>

If necessary, you can download and install it for your platform.

Note

FiPy requires at least version 2.3 of Python.

Numeric

http://www.numpy.org

Obtain and install the Numeric package. FiPy has been tested with version 23.1 of Numeric. The
newer Numarray package is not supported at this time.

http://www.apple.com/macosx/
http://www.debian.org/
http://www.debian.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/download/
http://www.python.org/
http://www.numpy.org
http://www.numpy.org
http://www.numpy.org
http://www.stsci.edu/resources/software_hardware/numarray

Recommended Packages 11

Note

Because of a peculiarity in the way that Numeric is structured, the --home=<dir> installation
option described in Privileges will not work quite as intended. To correct this problem, add
<dir>/lib/python/Numeric to your PYTHONPATH environment variable.

PySparse

FiPy requires a customized version of Roman Geus’ PySparse package.

You can either download the PySparse archive or check it out via anonymous CVS download:

$ cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/fipy login

and press enter at the password prompt, then:

$ cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/fipy checkout pysparse

From within the pysparse base directory, follow its included instructions for building PySparse for
your platform.

2.2.3 Recommended Packages

Note

These packages are not required to run FiPy, but they can be helpful.

SciPy

http://www.scipy.org/

Significantly improved performance has been achieved with the judicious use of C language inlining,
via the weave module of the SciPy package.

In addition, a handful of test cases use functions from the SciPy library.

gmsh

http://www.geuz.org/gmsh/

It is possible to create irregular meshes with this package.

Warning

The Mac OS X distribution of gmsh provides a nice graphical tool, but unfortunately this
tool cannot be used by FiPy. Please download the source distribution and build the gmsh
command-line tool for your platform.

http://www.scipy.org/documentation/mailman?fn=scipy-dev/2002-December/thread.html#1443
http://www.numpy.org
http://people.web.psi.ch/geus/
http://people.web.psi.ch/geus/pyfemax/pysparse.html
http://www.ctcms.nist.gov/fipy/download/pysparse-FiPy.tar.gz
http://people.web.psi.ch/geus/pyfemax/pysparse.html
http://www.scipy.org/
http://www.scipy.org/documentation/weave/
http://www.scipy.org/
http://www.scipy.org/
http://www.geuz.org/gmsh/
http://www.apple.com/macosx/

12 Obtaining FiPy

2.2.4 Viewers

FiPy will work perfectly well without them, but at least one of the following packages will be needed
to allow viewing the results of FiPy calculations:

Pygist

http://bonsai.ims.u-tokyo.ac.jp/˜mdehoon/software/python/pygist.html

The Pygist package can be used to display simulation results. We have not succeeded in building
the native Pygist viewer on Mac OS X and recommend building the package with the --x11 option
described in the documentation.

PyX

http://pyx.sourceforge.net/

PyX allows the production of publication quality graphics with TEX labels. If available, FiPy can
use this package to view or print results.

Gnuplot-py

http://gnuplot-py.sourceforge.net

Gnuplot.py is a Python package that interfaces to gnuplot, the popular open-source plotting pro-
gram.

2.3 Obtaining FiPy

FiPy is freely available for download via CVS or as a compressed archive. We recommend CVS over
archives at this early stage of the development cycle. To obtain FiPy via anonymous CVS, issue
the following commands:

$ cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/fipy login

and press enter at the password prompt, then:

$ cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/fipy checkout -r STABLE fipy

Further information about CVS can be found in Section 2.7 and at http://sourceforge.net/cvs/?group id=118428.

http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/python/pygist.html
http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/python/pygist.html
http://bonsai.ims.u-tokyo.ac.jp/~mdehoon/software/python/pygist.html
http://www.apple.com/macosx/
http://pyx.sourceforge.net/
http://pyx.sourceforge.net/
http://gnuplot-py.sourceforge.net
http://www.python.org/
http://gnuplot.sorceforge.net/
http://cvs.sourceforge.net/viewcvs.py/fipy/
http://www.ctcms.nist.gov/fipy/download/FiPy-0.1.tar.gz
http://cvs.sourceforge.net/viewcvs.py/fipy/
http://cvs.sourceforge.net/viewcvs.py/fipy/
http://sourceforge.net/cvs/?group_id=118428

Manual 13

2.3.1 Manual

You can download the latest manual or, if you have obtained FiPy via CVS, a fresh copy can be
built by issuing the following command in the base directory:

$ python setup.py build docs --latex --manual

The epydoc package and a command-line pdfTeX installation are required in order to build the
manual.

2.4 Testing FiPy

From the base directory, you can verify that FiPy works properly by executing:

$ python setup.py test

Depending on the packages you chose to install in Recommended Packages, be sure to set the
appropriate environment variables. You can expect a few errors if you did not install all of the
recommended packages.

If you chose to install the weave package, you should rerun the tests with:

$ python setup.py test --inline

A few tests will fail the first time as a result of the messages output in the course of caching the
compiled inline code, but a repeat test should have no failures.

2.5 Installing FiPy

Once you are confident that all of the requisite packages have been installed properly and FiPy
passes its tests, you can install it by typing:

$ python setup.py install

at the command line. Alternatively, you may choose not to formally install FiPy and to simply
work within the base directory instead.

Warning

Keep in mind that you will then need to preserve your changes when upgrades to FiPy become
available (upgrades via CVS will handle this issue automatically).

If you wish to develop FiPy scripts outside of the distribution directory, but choose not to formally
install FiPy, you will need to ensure that the FiPy distribution directory is appended to your
PYTHONPATH environment variable.

http://www.ctcms.nist.gov/fipy/download/fipy.pdf
http://cvs.sourceforge.net/viewcvs.py/fipy/
http://epydoc.sourceforge.net/
http://www.scipy.org/documentation/weave/
http://cvs.sourceforge.net/viewcvs.py/fipy/

14 CVS tags

2.6 Using FiPy

To see examples of problems that FiPy is capable of solving, you can run any of the scripts in Part II
. All should have appropriate executable permissions, allowing you to type, e.g.:

$ examples/diffusion/steadyState/mesh1D/input.py

at the command line, which should produce a graphical display of the solution.

With judicious use of the weave package, we have been able to obtain significantly improved per-
formance, while keeping the code as clear as possible. You can invoke this faster code by passing
the --inline option at the command line, i.e.:

$ examples/diffusion/steadyState/mesh1D/input.py --inline

In order to customize the examples, or to develop your own scripts, some knowledge of Python
syntax is required. We recommend you familiarize yourself with the excellent Python tutorial [6].

2.7 CVS tags

Most users will not want to download the latest state of FiPy in the CVS repository, as these files
are subject to active development and may not behave as desired. Any released version of FiPy
will be designated with a fixed tag:

version-x y designates a released version x.y.

The current version of FiPy is 0.1.

Most users will not be interested in particular version numbers, but instead with the degree of code
stability. Different “tracking tags” are used to indicate different stages of FiPy development. You
will need to decide on your own risk tolerance when deciding which stage of development to track.
The tracking tags applied FiPy, in decreasing order stability, are:

STABLE designates the most recent release in the repository that can be considered stable for daily
use by the common user. This is a good tag to track if you don’t want to run into bugs
introduced with ongoing development but would like to take advantage of new features as
soon as possible.

CURRENT designates the most recent code on the trunk forming a coherent state of FiPy, in general
this will mean a release, but can also mean a pre-release testing version. For instance, the
release engineer might ask testers to test CURRENT before he makes a release. This tracking
tag is restricted to the trunk.

HEAD this is a CVS internal tag designating the latest revision of any file present in the repository.
It is also a valid branch tag designating the trunk. For our purposes HEAD can be used
as a tracking tag designating the very latest code checked into the repository; FiPy is not
guaranteed to pass its tests or to be in a consistent state when checked out under this tag.
This tracking tag is restricted to the trunk.

One final type of tracking tag to note:

http://www.scipy.org/documentation/weave/
http://docs.python.org/tut/tut.html

15

branch-version-x y designates a line of development based on a previously released version (i.e., if
current development work is being spent on version 0.2, but a bug is found and fixed in version
0.1, that fix will be tagged as version-0 1 1, and can be obtained from branch-version-0 1).

Any other tags will not generally by of interest to most users.

A fresh copy of FiPy that is designated by a particular <tag> can be obtained with:

$ cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/fipy checkout -r <tag> fipy

An existing CVS checkout of FiPy can be shifted to a different state of development by issuing the
command:

$ cvs update -r <tag>

16 CVS tags

Chapter 3

Theoretical and Numerical
Background

This chapter describes the numerical methods used to solve equations in the FiPy programming
environment. FiPy uses the finite volume method (FVM) to solve coupled sets of partial differential
equations (PDEs). For a good introduction to the FVM see Nick Croft’s PhD thesis [7], Patanker [8]
or Versteek and Malalasekera [9].

Essentially, the FVM consists of dividing the solution domain into discrete finite volumes over which
the state variables are approximated with linear or higher order interpolations. The derivatives in
each term of the equation are satisfied with simple approximate interpolations in a process known
as discretization. The (FVM) is a popular discretization technique employed to solve coupled PDEs
used in many application areas (e.g. Fluid Dynamics).

3.1 General Conservation Equation

The equations that model the evolution of physical, chemical and biological systems often have a
remarkably universal form. Indeed, PDEs have proven necessary to model complex physical systems
and processes that involve variations in both space and time. In general, given a variable of interest
φ such as species concentration, pH, or temperature, there exists an evolution equation of the form

∂φ

∂t
= H(φ, λi) (3.1)

where H is a function of φ, other state variables λi, and higher order derivatives of all of these
variables. Examples of such systems are wide ranging, but include problems that exhibit a combi-
nation of diffusing and reacting species, as well as such diverse problems as determination of the
electric potential in heart tissue, of fluid flow, stress evolution, and even the Schrödinger equation.

A general conservation equation, solved using FiPy, can include any combination of the following

17

18 Finite Volume Method

Finite Volume Method
Solve a general PDE on a given domain for a field

Integrate PDE over arbitrary control volumes

Evaluate PDE over polyhedral control volumes !("#)
!t︸ ︷︷ ︸

transient

+$.("u#)︸ ︷︷ ︸
convection

= $.(%$#)︸ ︷︷ ︸
diffusion

+ S#︸︷︷︸
source

φ
a11 a12

a21 a22
. . .

.
. . . ann

φ1

φ2
...

φn

 =

b1

b2
...

bn

∂(ρφ)

∂t︸ ︷︷ ︸
transient

+∇ · ($uφ)︸ ︷︷ ︸
convection

= ∇ · (Γ∇φ)︸ ︷︷ ︸
diffusion

+ Sφ︸︷︷︸
source∫

V

∂(ρφ)
∂t

dV︸ ︷︷ ︸
transient

+
∫

S
($n · $u)φ dS︸ ︷︷ ︸
convection

=
∫

S
Γ($n ·∇φ) dS︸ ︷︷ ︸

diffusion

+
∫

V
Sφ dV︸ ︷︷ ︸

source

ρφV − (ρφV)old

∆t︸ ︷︷ ︸
transient

+
∑
face

[($n · $u)Aφ]face︸ ︷︷ ︸
convection

=
∑
face

[ΓA$n ·∇φ]face︸ ︷︷ ︸
diffusion

+ V Sφ︸︷︷︸
source

1

φ
a11 a12

a21 a22
. . .

.
. . . ann

φ1

φ2
...

φn

 =

b1

b2
...

bn

∂(ρφ)

∂t︸ ︷︷ ︸
transient

+∇ · ($uφ)︸ ︷︷ ︸
convection

= ∇ · (Γ∇φ)︸ ︷︷ ︸
diffusion

+ Sφ︸︷︷︸
source∫

V

∂(ρφ)
∂t

dV︸ ︷︷ ︸
transient

+
∫

S
($n · $u)φ dS︸ ︷︷ ︸
convection

=
∫

S
Γ($n ·∇φ) dS︸ ︷︷ ︸

diffusion

+
∫

V
Sφ dV︸ ︷︷ ︸

source

ρφV − (ρφV)old

∆t︸ ︷︷ ︸
transient

+
∑
face

[($n · $u)Aφ]face︸ ︷︷ ︸
convection

=
∑
face

[ΓA$n ·∇φ]face︸ ︷︷ ︸
diffusion

+ V Sφ︸︷︷︸
source

1

face

cell

vertex

Figure 3.1: A mesh consists of cells, faces and vertices. For the purposes of FiPy, the divider
between two cells is known as a face for all dimensions.

terms,
∂(ρφ)
∂t︸ ︷︷ ︸

transient

= ∇ · (~uφ)︸ ︷︷ ︸
convection

+∇ · (Γ1∇φ)︸ ︷︷ ︸
diffusion

+ [∇ · (Γi∇)]n φ︸ ︷︷ ︸
nth order

+ Sφ︸︷︷︸
source

(3.2)

where ρ, ~u and Γi represent coefficients in the transient, convection and diffusion terms respectively.
These coefficients can be arbitrary functions of any parameters or variables in the system. The
variable φ represents the unknown quantity in the equation. The nth order term can represent any
higher order diffusion-type term, where the order is given by the exponent n. For example, the nth

order term can represent a diffusion term when the exponent n = 1 or a Cahn-Hilliard term when
n = 2. A Cahn-Hilliard term has the form [10, 11, 12],

∇ · (Γ1∇ [∇ · (Γ2∇φ)]) (3.3)

Of course, higher order terms (n > 2) are also possible.

3.2 Finite Volume Method

To use the FVM, the solution domain must first be divided into non-overlapping polyhedral elements
or cells. A solution domain divided in such a way is generally known as a mesh (as we will see,
a Mesh is also a FiPy object). A mesh consists of vertices, faces and cells (see Figure 3.1). In the
FVM the variables of interest are averaged over control volumes (CVs). The CVs are either defined
by the cells or are centered on the vertices.

3.2.1 Cell Centered FVM (CC-FVM)

In the CC-FVM the CVs are formed by the mesh cells with the cell center ‘storing’ the average
variable value in the CV, (see Figure 3.2). The face fluxes are approximated using the variable values
in the two adjacent cells surrounding the face. This low order approximation has the advantage of
being efficient and requiring matrices of low band width (the band width is equal to the number of
cell neighbors plus one) and thus low storage requirement. However, the mesh topology is restricted

Vertex Centered FVM (VC-FVM) 19

(b)

a

1

2

3

4

Ω

Ω

Ω

Ω4

3

2

1

Ω

a

a

1

2

3

4

(a)

Figure 3.2: CV structure for an unstructured mesh, (a) Ωa represents a vertex-based CV and (b)
Ω1, Ω2, Ω3 and Ω4 represent cell centered CVs.

due to an orthogonality and conjunctionality requirement. The value at a face is assumed to be
the average value over the face. On an unstructured mesh the face center may not lie on the line
joining the CV centers, which will lead to an error in the face interpolation. FiPy currently only
uses the CC-FVM.

3.2.2 Vertex Centered FVM (VC-FVM)

In the VC-FVM the CV is centered around the vertices and the cells are divided into sub-control
volumes that make up the main CVs, (see Figure 3.2). The vertices ‘store’ the average variable
values over the CVs. The CV faces are constructed within the cells rather than using the cell faces
as in the CC-FVM. The face fluxes use all the vertex values from the cell where the face is located to
calculate interpolations. For this reason, the VC-FVM is less efficient and requires more storage (a
larger matrix band width) than the CC-FVM. However, the mesh topology does not have the same
restrictions as the CC-FVM. Future releases of FiPy will have both the CC-FVM and VC-FVM
capabilities.

3.3 Discretization

The first step in the discretization of Equation (3.2) using the CC-FVM is to integrate over a
CV and then make appropriate approximations for fluxes across the boundary of each CV. In this
section, each term in Equation (3.2) will be examined separately.

20 Discretization

3.3.1 Transient Term

For the transient term, the discretization of the integral
∫

V
over the volume of a CV is given by∫

V

∂(ρφ)
∂t

dV ' ρP (φP − φold
P)VP

∆t
(3.4)

where φP represents the average value of φ in a CV centered on a point P and the superscript “old”
represents the previous time-step value. The value VP is the volume of the CV and ∆t is the time
step size.

3.3.2 Convection Term

The discretization for the convection term is given by∫
V

∇ · (~uφ) dV =
∫

S

(~n · ~u)φdS (3.5)

'
∑

f

(~n · ~u)fφfAf (3.6)

where we have used the divergence theorem to transform the integral over the CV volume
∫

V
into

an integral over the CV surface
∫

S
. The summation over the faces of a CV is denoted by

∑
f and

Af is the area of each face. The vector ~n is the normal to the face pointing out of the CV into an
adjacent CV centered on point A. When using a first order approximation, the value of φf must
depend on the average value in adjacent cell φA and the average value in the cell of interest φP ,
such that

φf = αfφP + (1− αf)φA. (3.7)

The weighting factor αf is determined by the convection scheme, described later in this chapter.

3.3.3 Diffusion Term

The discretization for the diffusion term is given by∫
V

∇ · (Γ∇φ)dV =
∫

S

Γ(~n · ∇φ)dS (3.8)

'
∑

f

Γf (~n · ∇φ)fAf (3.9)

The estimation for the flux, (~n · ∇φ)f , is obtained via

(~n · ∇φ)f '
φA − φP

dAP
(3.10)

where the value of dAP is the distance between neighboring cell centers. This estimate relies on the
orthogonality of the mesh, and becomes increasingly inaccurate as the non-orthogonality increases.
Correction terms have been derived to improve this error but are not currently included in FiPy [7].

Source Term 21

3.3.4 Source Term

The discretization for the source term is given by,∫
V

Sφ dV ' SφVP . (3.11)

Including any negative dependence of Sφ on φ increases solution stability. The dependence can only
be included in a linear manner so Equation (3.11) becomes

VP (S0 − S1φP), (3.12)

where S0 is the source which is independent of φ and S1 is the coeficient of the source which is
linearly dependent on φ.

3.4 Linear Equations

The aim of the discretization is to reduce the continuous general equation to a set of discrete linear
equations that can then be solved to obtain the value of the dependent variable at each CV center.
This results in a sparse linear system that requires an efficient iterative scheme to solve. The
iterative schemes available to FiPy are currently encapsulated in the spmatrix suite of solvers and
include most common solvers such as the conjugate gradient method and LU decomposition. There
are plans to include other solver suites that are compatible with Python.

Combining Equations (3.4), (3.6), (3.9) and (3.11), the complete discretization for equation (3.2)
can now be written for each CV as

ρP (φP − φold
P)VP

∆t
=

∑
f

(~n · ~u)fAf [αfφP + (1− αf)φA]

+
∑

f

ΓfAf
(φA − φP)

dAP
+ VP (S0 − S1φP). (3.13)

Equation (3.13) is now in the form of a set of linear combinations between each CV value and its
neighboring values and can be written in the form

aPφP =
∑

f

aAφA + bP , (3.14)

where

aP = VPS1 +
ρPVP

∆t
+

∑
f

(aA − Ff), (3.15)

aA = (1− αf)Ff +Df , (3.16)

bP = VPS0 +
ρPVPφ

old
P

∆t
. (3.17)

http://www.python.org/

22 Numerical Schemes

The face coefficients, Ff and Df , represent the convective strength and diffusive conductance re-
spectively, and are given by

Ff = Af (~u · ~n)f , (3.18)

Df =
AfΓf

dAP
. (3.19)

3.5 Numerical Schemes

The coefficients of equation (3.14) must remain positive, since an increase in a neighboring value
must result in an increase in φP to obtain physically realistic solutions. Thus, the inequalities
aA > 0 and aA − Ff > 0 must be satisfied. The Peclet number Pf ≡ −Ff/Df is the ratio
between convective strength and diffusive conductance. To achieve physically realistic solutions,
the inequality

1
1− αf

> Pf > − 1
αf

(3.20)

must be satisfied. The parameter αf is defined by the chosen scheme, depending on Equation (3.20).
The various differencing schemes are:

the central differencing scheme, where

αf =
dAf

dAf + dfP
. (3.21)

In many circumstances with a structured mesh, αf = 1/2, so that |Pf | < 2 satisfies Equa-
tion (3.20). Thus, the central differencing scheme is only numerically stable for a low values
of Pf .

the upwind scheme, where

αf =

1 if Pf > 0,

0 if Pf < 0.
(3.22)

Equation (3.22) satisfies the inequality in Equation (3.20) for all values of Pf . However
the solution over predicts the diffusive term leading to excessive numerical smearing (“false
diffusion”).

the exponential scheme, where

αf =
(Pf − 1) exp (Pf) + 1
Pf (exp (Pf)− 1)

. (3.23)

This formulation can be derived from the exact solution, and thus, guarantees positive coeffi-
cients while not over-predicting the diffusive terms. However, the computation of exponentials
is slow and therefore a faster scheme is generally used, especially in higher dimensions.

23

the hybrid scheme, where

αf =

Pf−1

Pf
if Pf > 2,

1
2 if |Pf | < 2,

− 1
Pf

if Pf < −2.

(3.24)

The hybrid scheme is formulated by allowing Pf → ∞, Pf → 0 and Pf → −∞ in the
exponential scheme. The hybrid scheme is an improvement on the upwind scheme, however,
it deviates from the exponential scheme at |Pf | = 2.

the power law scheme, where

αf =

Pf−1
Pf

if Pf > 10,
(Pf−1)+(1−Pf /10)5

Pf
if 0 < Pf < 10,

(1−Pf /10)5−1
Pf

if −10 < Pf < 0,

− 1
Pf

if Pf < −10.

(3.25)

The power law scheme overcomes the inaccuracies of the hybrid scheme, while improving on
the computational time for the exponential scheme.

All of the numerical schemes presented here are available in FiPy and can be selected by the user.

24 Numerical Schemes

Chapter 4

Design and Implementation

The goal of FiPy is to provide a highly customizable, open source code for modeling problems
involving coupled sets of PDEs. FiPy allows users to select and customize modules from within
the framework. The initial implementation of FiPy has been developed to address model problems
in materials science such as poly-crystals, dendritic growth and electrochemical deposition. These
applications all contain various combinations of PDEs with differing forms in conjunction with
other unusual physics (over varying length scales) and unique solution procedures. The philosophy
of FiPy is to enable customization while providing a library of efficient modules for common objects
and data types.

4.1 Design

4.1.1 Numerical Approach

The solution algorithms given in the FiPy examples involve combining sets of PDEs while tracking
an interface where the parameters of the problem change rapidly. The phase field method and the
level set method are specialized techniques to handle the solution of PDEs in conjunction with a
deforming interface. FiPy contains several examples of both methods.

FiPy uses the well-known Finite Volume Method (FVM) to reduce the model equations to a form
tractable to linear solvers.

4.1.2 Object Oriented Structure

FiPy is programmed in an object-oriented manner. The benefit of object oriented programming
mainly lies in encapsulation and inheritance. Encapsulation refers to the tight integration between
certain pieces of data and methods that act on that data. Encapsulation allows parts of the code to
be separated into clearly defined independent modules that can be re-applied or extended in new
ways. Inheritance allows code to be reused, overridden, and new capabilities to be added without

25

26 Design

altering the original code. An object is treated by its users as an abstraction; the details of its
implementation and behavior are internal.

4.1.3 Test Based Development

FiPy has been developed with a large number of test cases. These test cases are in two categories.
The lower level tests operate on the core modules at the individual method level. The aim is that
every method within the core installation has a test case. The high level test cases operate in
conjunction with example solutions and serve to test global solution algorithms and the interaction
of various modules.

With this two-tiered battery of tests, at any stage in code development, the test cases can be
executed and errors can be identified. A comprehensive test base provides reassurance that any code
breakages will be clearly demonstrated with a broken test case. A test base also aids dissemination
of the code by providing simple examples and knowledge of whether the code is working on a
particular computer environment.

4.1.4 Open Source

In recent years, there has been a movement to release software under open source and associated
unrestrictied licenses, especially within the scientific community. These licensing terms allow users
to develop their own applications with complete access to the source code and then either contribute
back to the main source repository or freely distribute their new adapted version.

As a product of the National Institute of Standards and Technology, the FiPy framework is placed
in the public domain as a matter of U. S. Federal law. Furthermore, FiPy is built upon existing
open source tools. Others are free to use FiPy as they see fit and we welcome contributions to make
FiPy better.

4.1.5 High-Level Scripting Language

Programming languages can be broadly lumped into two categories: compiled languages and in-
terpreted (or scripting) languages. Compiled languages are converted from a human-readable text
source file to a machine-readable binary application file by a sequence of operations generally re-
ferred to as “compiling” and “linking”. The binary application can then be run as many times as
desired, but changes will provoke a new cycle of compiling and linking. Interpreted languages are
converted from human-readable to machine-readable on the fly, each time the script is executed.
Because the conversion happens every time1, interpreted code is usually slower when running than
compiled code. On the other hand, code development and debugging tends to be much easier and
fluid when it’s not necessary to wait for compile and link cycles after every change. Furthermore,
because the conversion happens in real time, it is possible to have interactive sessions in a scripting
language that are not generally possible in compiled languages.

1. . . neglecting such common optimizations as byte-code interpreters

High-Level Scripting Language 27

Another distinction, somewhat orthogonal, but closely related, to that between compiled and in-
terpreted languages, is between low-level languages and high-level languages. Low-level languages
describe actions in simple terms that are closer to the way the computer actually functions. High-
level languages describe actions in more complex and abstract terms that are closer to the way the
programmer thinks about the problem at hand. This increased complexity in the meaning of an
expression renders simpler code, because the details of the implementation are hidden away in the
language internals or in an external library. For example, a low-level matrix multiplication written
in C might be rendered as

if (Acols != Brows)
error "these matrix shapes cannot be multiplied";

C = (float *) malloc(sizeof(float) * Bcols * Arows);

for (i = 0; i < Bcols; i++) {
for (j = 0; j < Arows; j++) {

C[i][j] = 0;
for (k = 0; k < Acols; k++) {

C[i][j] += A[i][k] * B[k][j];
}

}
}

Note that the dimensions of the arrays must be supplied externally, as C provides no intrinsic
mechanism for determining the shape of an array. An equivalent high-level construction might be
as simple as

C = A * B

All of the error checking, dimension measuring, and space allocation is handled automatically by
low-level code that is intrinsic to the high-level matrix multiplication operator. The high-level
code “knows” that matrices are involved, how to get their shapes, and to interpret ‘*’ as a matrix
multiplier instead of an arithmetic one. All of this allows the programmer to think about the
operation of interest and not worry about introducing bugs in low-level code that is not unique to
their application.

Although it needn’t be true, for a variety of reasons, compiled languages tend to be low-level
and interpreted languages tend to be high-level. Because low-level languages operate closer to
the intrinsic “machine language” of the computer, they tend to be faster at running a given task
than high-level languages, but programs written in them take longer to write and debug. Because
running performance is a paramount concern, most scientific codes are written in low-level compiled
languages like FORTRAN or C.

A rather common scenario in the development of scientific codes is that the first draft hard-codes
all of the problem parameters. After a few (hundred) iterations of recompiling and relinking the
application to explore changes to the parameters, code is added to read an input file containing
a list of numbers. Eventually, the point is reached where it is impossible to remember which
parameter comes in which order or what physical units are required, so code is added to, for example,
interpret a line beginning with ‘#’ as a comment. At this point, the scientist has begun developing

28 Implementation

a scripting language without even knowing it. Unfortunately for them, very few scientists have
actually studied computer science or actually know anything about the design and implementation
of script interpreters. Even if they have the expertise, the time spent developing such a language
interpreter is time not spent actually doing research.

In contrast, a number of very powerful scripting languages, such as Tcl, Java, Python, Ruby, and
even the venerable BASIC, have open source interpreters that can be embedded directly in an
application, giving scientific codes immediate access to a high-level scripting language designed by
someone who actually knew what they were doing.

We have chosen to go a step further and not just embed a full-fledged scripting language in the
FiPy framework, but instead to design the framework from the ground up in a scripting language.
While runtime performance is unquestionably important, many scientific codes are run relatively
little, in proportion to the time spent developing them. If a code can be developed in a day instead
of a month, it may not matter if it takes another day to run instead of an hour. Furthermore,
there are a variety of mechanisms for diagnosing and optimizing those portions of a code that are
actually time-critical, rather than attempting to optimize all of it by using a language that is more
palatable to the computer than to the programmer. Thus FiPy, rather than taking the approach
of writing the fast numerical code first and then dealing with the issue of user interaction, initially
implements most modules in high-level scripting language and only translates to low-level compiled
code those portions that prove inefficient.

4.1.6 Python Programming Language

Acknowledging that several scripting languages offer a number, if not all, of the features described
above, we have selected Python for the implementation of FiPy. Python is:

• an interpreted language that combines remarkable power with very clear syntax,

• freely usable and distributable, even for commercial use,

• fully object oriented,

• distributed with powerful automated testing tools (doctest, unittest),

• actively used and extended by other scientists and mathemeticians (SciPy, Numeric, Scientific
Python, PySparse).

• easily integrated with low-level languages such as C (weave, blitz, PyRex).

4.2 Implementation

The Python classes that make up FiPy are described in detail in the FiPy Programmer’s Reference,
but we give a brief overview here. FiPy is based around three fundamental Python classes: Mesh,
Variable, and Equation. Using the terminology of Chapter 3:

A Mesh object represents the domain of interest. FiPy contains many different specific mesh
classes to describe different geometries.

http://www.python.org/
http://www.python.org/
http://www.python.org/doc/current/lib/module-doctest.html
http://www.python.org/doc/current/lib/module-unittest.html
http://www.scipy.org/
http://www.numpy.org/
http://starship.python.net/~hinsen/ScientificPython/
http://starship.python.net/~hinsen/ScientificPython/
http://people.web.psi.ch/geus/pyfemax/pysparse.html
http://www.scipy.org/documentation/weave/
http://www.scipy.org/documentation/weave/
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/
http://www.python.org/
http://www.python.org/

29

Equation Iterator

Solver

Term

Variable Viewer

SparseMatrix
MeshCell Face Vertex

BoundaryCondition

Figure 4.1: Primary object relationships in FiPy.

A Variable object represents a quantity or field that can change during the problem evolution.
A particular type of Variable, called a CellVariable, represents φ at the centers of the
Cells of the Mesh. A CellVariable describes the values of the field φ, but it is not concerned
with their geometry; that role is taken by the Mesh.

An important property of Variable objects is that they can describe dependency relation-
ships, such that:

>>> a = Variable(value = 3)
>>> b = a * 4

does not assign the value 12 to b, but rather it assigns a multiplication operator object to b,
which depends on the Variable object a:

>>> b
(Variable(value = 3) * 4)
>>> a.setValue(5)
>>> b
(Variable(value = 5) * 4)

The numerical value of the Variable is not calculated until it is needed (a process known as
“lazy evaluation”):

>>> print b
20

An Equation object represents Equation (3.1).

Beyond these three fundamental classes, FiPy is composed of a number of related classes. The
relationships between these classes are shown in Figure 4.1. A Mesh object is composed of Cell
objects. Each Cell is defined by its bounding Face objects and each Face is defined by its bounding
Vertex objects. As shown conceptually in Equation (3.2), an Equation is composed of multiple
Term objects, which encapsulate the building of different parts of the SparseMatrix that defines the
solution of the Equation. BoundaryCondition objects are used to describe the conditions on the
boundaries of the Mesh, and each Term interprets the BoundaryCondition objects as necessary to

30 Implementation

modify the SparseMatrix. An Iterator object handles the iterative solution of a set of Equation
objects until some desired convergence criterion has been met. Each Equation can apply a unique
Solver to invert its SparseMatrix in the most expedient and stable fashion. At any point during
the solution, a Viewer can be invoked to display the values of the solved Variable objects.

At this point, it will be useful to examine some of the example problems in Part II. More classes
are introduced in the examples, along with illustrations of their instantiation and use.

Part II

Examples

31

33

Note

Any given “Module example.something.input” can be found in the file
“examples/something/input.py”.

These examples can be used in at least four ways:

• Each example can be invoked individually to demonstrate an application of FiPy:

$ examples/something/input.py

• Each example can be invoked such that when it has finished running, you will be left in an
interactive Python shell:

$ python -i examples/something/input.py

At this point, you can enter Python commands to manipulate the model or to make queries
about the example’s variable values. For instance, the interactive Python sessions in the
example documentation can be typed in directly to see that the expected results are obtained.

• Alternatively, these interactive Python sessions, known as doctest blocks, can be invoked as
automatic tests:

$ python setup.py test --examples

In this way, the documentation and the code are always certain to be consistent.

• Finally, and most importantly, the examples can be used as a templates to design your own
problem scripts.

Note

The examples shown in this manual have been written with particular emphasis on serving
as both documentation and as comprehensive tests of the FiPy framework. As explained at
the end of examples/diffusion/steadyState/mesh1D.py, your own scripts can be much
more succint, if you wish, and include only the text that follows the “>>>” and “...” prompts
shown in these examples.
To obtain a copy of an example, containing just the script instructions, type:
$ python setup.py copy script --From x.py --To y.py

In addition to those presented in this manual, there are dozens of other files in the examples/
directory (all with “input” in their title), that demonstrate other uses of FiPy. If these examples
do not help you construct your own problem scripts, please contact us.

http://www.python.org/
http://www.python.org/
http://www.python.org/
http://www.python.org/doc/current/lib/module-doctest.html
mailto:fipy@nist.gov

34

Example Contents

5 Diffusion Examples 37
5.1 Module examples.diffusion.steadyState.mesh1D.input 37
5.2 Module examples.diffusion.steadyState.mesh20x20.input 40
5.3 Module examples.diffusion.explicit.mesh10.input 42
5.4 Module examples.diffusion.variable.mesh10x1.input 43
5.5 Module examples.diffusion.nthOrder.input2ndOrder1D 45
5.6 Module examples.diffusion.nthOrder.input4thOrder1D 47

6 Convection Examples 51
6.1 Module examples.convection.exponential1D.input 51
6.2 Module examples.convection.exponential1DSource.input 53

7 Phase Field Examples 57
Solidification Examples . 57
7.1 Module examples.phase.anisotropy.input . 57
7.2 Module examples.phase.impingement.mesh40x1.input 61
7.3 Module examples.phase.impingement.mesh20x20.base 65
7.4 Module examples.phase.impingement.mesh20x20.input 68
7.5 Module examples.phase.impingement.restart.input 69
Electrochemistry Examples . 72
7.6 Module examples.elphf.phase.input1D . 72
7.7 Module examples.elphf.diffusion.input1D . 74
7.8 Module examples.elphf.diffusion.input1Ddimensional 76
7.9 Module examples.elphf.poisson.input1DrightCharge 78
7.10 Module examples.elphf.phaseDiffusion.input1Dbinary 80
7.11 Module examples.elphf.phaseDiffusion.input1DternaryAndElectrons 82

8 Level Set Examples 85
8.1 Module examples.levelSet.distanceFunction.oneD.input 85
8.2 Module examples.levelSet.distanceFunction.circle.input 86
8.3 Module examples.levelSet.advection.mesh1D.input 88
8.4 Module examples.levelSet.advection.circle.input . 90
Superconformal Electrodeposition Example . 92
8.5 Module examples.levelSet.electroChem.input . 92

9 Cahn-Hilliard Examples 101

36 EXAMPLE CONTENTS

9.1 Module examples.cahnHilliard.inputTanh1D . 101

Chapter 5

Diffusion Examples

5.1 Module examples.diffusion.steadyState.mesh1D.input

To run this example from the base FiPy directory, type:

$ examples/diffusion/steadyState/mesh1D/input.py

at the command line. A display of the result should appear and the word finished in the terminal.

This example takes the user through assembling a simple problem with FiPy. It describes a steady
1D diffusion problem with fixed value boundary conditions such that,

∇ · (D∇φ) = 0

with initial conditions φ = 0 at t = 0, boundary conditions

φ =

0 at x = 0,

1 at x = 1,

and parameter value D = 1. The first step is to create a mesh with 50 elements. The Grid2D object
represents a rectangular structured grid. The parameters dx and dy refer to the grid spacing (set
to unity here).

>>> nx = 50
>>> ny = 1
>>> dx = 1.
>>> dy = 1.
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx = dx, dy = dy, nx = nx, ny = ny)

The solution of all equations in FiPy requires a variable. These variables store values on various
parts of the mesh. In this case we need a CellVariable object as the solution is sought on the cell
centers. The boundary conditions are given by valueLeft = 0 and valueRight = 1. The initial
value for the variable is set to value = valueLeft.

37

38 Module examples.diffusion.steadyState.mesh1D.input

>>> valueLeft = 0
>>> valueRight = 1
>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable(name = "solution variable", mesh = mesh, value = valueLeft)

Boundary conditions are given to the equation via a Tuple (list). Boundary conditions are formed
with a value and a set of faces over which they apply. For example here the exterior faces on the
left of the domain are extracted by mesh.getFacesLeft(). These faces and a value (valueLeft)
are passed to a FixedValue boundary condition. A fixed flux of zero is set on the top and bottom
surfaces to simulate a one dimensional problem. The FixedFlux(someFaces, 0.) is the default
boundary condition if no boundary conditions are specified for exterior faces.

>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> from fipy.boundaryConditions.fixedFlux import FixedFlux
>>> boundaryConditions = (FixedFlux(mesh.getFacesTop(),0.),
... FixedFlux(mesh.getFacesBottom(),0.),
... FixedValue(mesh.getFacesRight(),valueRight),
... FixedValue(mesh.getFacesLeft(),valueLeft))

A solver is created and passed to the equation. This solver uses an iterative conjugate gradient
method to solve implicitly at each time step.

>>> from fipy.solvers.linearPCGSolver import LinearPCGSolver
>>> solver = LinearPCGSolver(tolerance = 1.e-15, steps = 1000)

An equation is passed coefficient values, boundary conditions and a solver. The equation knows
how to assemble and solve a system matrix. The DiffusionEquation object in FiPy represents a
general transient diffusion equation

∂(τφ)
∂t

= ∇ · (D∇φ).

We solve this equation in steady state by setting τ = 0, which is accomplished by setting the
transientCoeff parameter to 0:

>>> from fipy.equations.diffusionEquation import DiffusionEquation
>>> eq = DiffusionEquation(var,
... transientCoeff = 0.,
... diffusionCoeff = 1.,
... solver = solver,
... boundaryConditions = boundaryConditions)

The Iterator object takes a Tuple of equations and solves to a required tolerance for the given
equations at each time step.

>>> from fipy.iterators.iterator import Iterator
>>> iterator = Iterator((eq,))

Here the iterator does one time step to implicitly find the steady state solution.

>>> iterator.timestep()

39

To test the solution, the analytical result is required. The x coordinates from the mesh are gathered
and the length of the domain Lx is calculated. An array, analyticalArray, is calculated to compare
with the numerical result,

>>> x = mesh.getCellCenters()[:,0]
>>> Lx = nx * dx
>>> analyticalArray = valueLeft + (valueRight - valueLeft) * x / Lx

Finally the analytical and numerical results are compared with a tolerance of 1e-10.

>>> import Numeric
>>> Numeric.allclose(var, analyticalArray, rtol = 1e-10, atol = 1e-10)
1

A Viewer object allows a variable to be displayed. Here we are using the Gist package to view the
field. The Gist viewer is constructed and the results are viewed:

>>> if __name__ == ’__main__’:
... from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
... viewer = Grid2DGistViewer(var, minVal =0., maxVal = 1.)
... viewer.plot()

If this example had been written primarily as a script, instead of as documentation, we would delete
every line that does not begin with either “>>>” or “...”, and then delete those prefixes from the
remaining lines, leaving:

nx = 50
ny = 1
dx = 1.
dy = 1.
from fipy.meshes.grid2D import Grid2D
mesh = Grid2D(dx = dx, dy = dy, nx = nx, ny = ny)

valueLeft = 0
valueRight = 1
from fipy.variables.cellVariable import CellVariable
var = CellVariable(name = "solution variable", mesh = mesh, value = valueLeft)

from fipy.boundaryConditions.fixedValue import FixedValue
from fipy.boundaryConditions.fixedFlux import FixedFlux
boundaryConditions = (FixedFlux(mesh.getFacesTop(),0.),

FixedFlux(mesh.getFacesBottom(),0.),
FixedValue(mesh.getFacesRight(),valueRight),
FixedValue(mesh.getFacesLeft(),valueLeft))

from fipy.solvers.linearPCGSolver import LinearPCGSolver
solver = LinearPCGSolver(tolerance = 1.e-15, steps = 1000)

40 Module examples.diffusion.steadyState.mesh20x20.input

from fipy.equations.diffusionEquation import DiffusionEquation
eq = DiffusionEquation(var,

transientCoeff = 0.,
diffusionCoeff = 1.,
solver = solver,
boundaryConditions = boundaryConditions)

from fipy.iterators.iterator import Iterator
iterator = Iterator((eq,))

iterator.timestep()

x = mesh.getCellCenters()[:,0]
Lx = nx * dx
analyticalArray = valueLeft + (valueRight - valueLeft) * x / Lx

import Numeric
Numeric.allclose(var, analyticalArray, rtol = 1e-10, atol = 1e-10)

from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
viewer = Grid2DGistViewer(var, minVal =0., maxVal = 1.)

if name == ’ main ’:
viewer.plot()

Your own scripts will tend to look like this, although you can always write them as doctest scripts
if you choose. You can obtain a plain script like this from one of the examples by typing:

$ python setup.py copy script --From examples/.../input.py --To myInput.py

at the command line.

Most of the FiPy examples will be a mixture of plain scripts and doctest documentation/tests.

5.2 Module examples.diffusion.steadyState.mesh20x20.input

This input file again solves a steady 1D diffusion problem as in
examples/diffusion/steadyState/mesh1D/input.py, the difference being that the mesh is
two dimensional:

>>> nx = 20
>>> ny = 20
>>> dx = 1.
>>> dy = 1.
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx = dx, dy = dy, nx = nx, ny = ny)

We create a CellVariable and initialize it to valueLeft:

41

>>> valueLeft = 0.
>>> valueRight = 1.
>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable(name = "solution variable",
... mesh = mesh,
... value = valueLeft)

We create a diffusion equation, which is solved with an iterative conjugate gradient solver. We
apply Dirichlet boundary conditions to the left and right and Neumann boundary conditions to the
top and bottom.

>>> from fipy.equations.diffusionEquation import DiffusionEquation
>>> from fipy.solvers.linearPCGSolver import LinearPCGSolver
>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> from fipy.boundaryConditions.fixedFlux import FixedFlux
>>> eq = DiffusionEquation(var,
... transientCoeff = 0.,
... diffusionCoeff = 1.,
... solver = LinearPCGSolver(tolerance = 1.e-15,
... steps = 1000
...),
... boundaryConditions = (FixedValue(mesh.getFacesLeft(),valueLeft),
... FixedValue(mesh.getFacesRight(),valueRight),
... FixedFlux(mesh.getFacesTop(),0.),
... FixedFlux(mesh.getFacesBottom(),0.)
...)
...)

We iterate the diffusion equation to equilibrium:

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator((eq,))
>>> it.timestep()

The result is again tested against the expected linear composition profile:

>>> Lx = nx * dx
>>> x = mesh.getCellCenters()[:,0]
>>> analyticalArray = valueLeft + (valueRight - valueLeft) * x / Lx
>>> import Numeric
>>> Numeric.allclose(var, analyticalArray, rtol = 1e-10, atol = 1e-10)
1

If the problem is run interactively, we can view the result:

>>> if __name__ == ’__main__’:
... from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
... viewer = Grid2DGistViewer(var)
... viewer.plot()

42 Module examples.diffusion.explicit.mesh10.input

5.3 Module examples.diffusion.explicit.mesh10.input

This input file again solves a 1D diffusion problem as in
examples/diffusion/steadyState/mesh1D/input.py, the difference being that this transient
example is solved explicitly.

We create a 1D mesh:

>>> nx = 100
>>> ny = 1
>>> dx = 1.
>>> dy = 1.
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx, dy, nx, ny)

and we initialize a CellVariable to initialValue:

>>> valueLeft = 0.
>>> initialValue = 1.
>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable(
... name = "concentration",
... mesh = mesh,
... value = initialValue)

The transient equation
∂(τφ)
∂t

= ∇ · (D∇φ)

is represented by the ExplicitDiffusionEquation, which includes a TransientTerm. The coeffi-
cient of the TransientTerm depends on the desired time step.

>>> timeStepDuration = 0.1

We take the diffusion coefficient D = 1

>>> diffusionCoeff = 1.

We build the equation with an appropriate solver and boundary conditions:

>>> from fipy.equations.explicitDiffusionEquation import ExplicitDiffusionEquation
>>> from fipy.solvers.linearPCGSolver import LinearPCGSolver
>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> from fipy.boundaryConditions.fixedFlux import FixedFlux
>>> eq = ExplicitDiffusionEquation(var,
... transientCoeff = 1. / timeStepDuration,
... diffusionCoeff = diffusionCoeff,
... solver = LinearPCGSolver(tolerance = 1.e-15,
... steps = 1000
...),
... boundaryConditions=(
... FixedValue(mesh.getFacesLeft(),valueLeft),

43

... FixedFlux(mesh.getFacesRight(),0),

... FixedFlux(mesh.getFacesTop(),0.),

... FixedFlux(mesh.getFacesBottom(),0.)

...)

...)

In this case, many steps have to be taken to reach equilibrium. A loop is required to execute the
necessary time steps:

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator((eq,))
>>> steps = 100
>>> for step in range(steps):
... it.timestep()

The analytical solution for this transient diffusion problem is given by φ = erf(x/2
√
Dt). The result

is tested against the expected profile:

>>> Lx = nx * dx
>>> x = mesh.getCellCenters()[:,0]
>>> t = timeStepDuration * steps
>>> import Numeric
>>> epsi = x / Numeric.sqrt(t * diffusionCoeff)
>>> import scipy
>>> analyticalArray = scipy.special.erf(epsi/2)
>>> Numeric.allclose(var, analyticalArray, atol = 2e-3)
1

If the problem is run interactively, we can view the result:

>>> if __name__ == ’__main__’:
... from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
... viewer = Grid2DGistViewer(var)
... viewer.plot()

5.4 Module examples.diffusion.variable.mesh10x1.input

This example is a 1D steady state diffusion test case with a diffusion coefficient that spatially varies
such that

∂

∂x
D
∂φ

∂x
= 0,

with boundary conditions φ = 0 at x = 0 and D ∂φ
∂x = 1 at x = L. The diffusion coefficient varies

with the profile

D =

1 for 0 < x < L/4,

0.1 for L/4 ≤ x < 3L/4,

1 for 3L/4 ≤ x < L,

44 Module examples.diffusion.variable.mesh10x1.input

where

>>> L = 1.

is the length of the bar. Accurate answers to this problem are given for any number of cells where
nCells = 4 * i + 2 where i is an integer and of course for large nCells. In this example

>>> nx = 10

We create a 1D mesh of the appropriate size

>>> ny = 1
>>> dx = L / nx
>>> dy = 1.
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx, dy, nx, ny)

and initialize the solution variable to valueLeft:

>>> valueLeft = 0.
>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable(
... name = "solution variable",
... mesh = mesh,
... value = valueLeft)

In this example, the diffusion coefficient is a numerical array that is passed to the diffusion equation.
The diffusion coefficient exists on the faces of the cells and thus has to be the length of the faces.
It is created in the following way:

>>> x = mesh.getFaceCenters()[:,0]
>>> import Numeric
>>> outerFaces = Numeric.logical_or(x < L / 4., x >= 3. * L / 4.)
>>> diffCoeff = Numeric.where(outerFaces, 1., 0.1)

We seek a steady-state solution, so the transientCoeff of the DiffusionEquation is set to zero.
For boundary conditions, we have no-flux conditions top and bottom, a fixed value of valueLeft
to the left, and a fixed flux of

>>> fluxRight = 1.

to the right:

>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> from fipy.boundaryConditions.fixedFlux import FixedFlux
>>> from fipy.solvers.linearPCGSolver import LinearPCGSolver
>>> from fipy.equations.diffusionEquation import DiffusionEquation
>>> eq = DiffusionEquation(
... var,
... transientCoeff = 0.,
... diffusionCoeff = diffCoeff,
... solver = LinearPCGSolver(
... tolerance = 1.e-15,

45

... steps = 1000

...),

... boundaryConditions=(

... FixedValue(mesh.getFacesLeft(),valueLeft),

... FixedFlux(mesh.getFacesRight(),fluxRight),

... FixedFlux(mesh.getFacesTop(),0.),

... FixedFlux(mesh.getFacesBottom(),0.)

...)

...)

We iterate one time step to implicitly find the steady state solution:

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator((eq,))
>>> it.timestep()

A simple analytical answer can be used to test the result:

φ =

x for 0 < x < L/4,

10x− 9L/4 for L/4 ≤ x < 3L/4,

x+ 18L/4 for 3L/4 ≤ x < L,

or

>>> x = mesh.getCellCenters()[:,0]
>>> values = x + 18. * L / 4.
>>> values = Numeric.where(x < 3. * L / 4., 10 * x - 9. * L / 4., values)
>>> values = Numeric.where(x < L / 4., x, values)
>>> Numeric.allclose(values, var, atol = 1e-8, rtol = 1e-8)
1

If the problem is run interactively, we can view the result:

>>> if __name__ == ’__main__’:
... from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
... viewer = Grid2DGistViewer(var, maxVal = L + 18. * L / 4.)
... viewer.plot()

5.5 Module examples.diffusion.nthOrder.input2ndOrder1D

In this problem, we demonstrate the use of the NthOrderDiffusionEquation
class in the simple case of steady state 1D diffusion, which was introduced in
examples/diffusion/steadyState/mesh1D/input.py, to solve

∇ · (D∇φ) = 0.

This examples shows that the NthOrderDiffusionEquation is equivalent to the
DiffusionEquation when n = 2.

46 Module examples.diffusion.nthOrder.input2ndOrder1D

We create an appropriate 1D mesh:

>>> nx = 10
>>> ny = 1
>>> dx = 1.
>>> dy = 1.
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx = dx, dy = dy, nx = nx, ny = ny)

and initialize the solution variable to valueLeft:

>>> valueLeft = 0.
>>> valueRight = 1.
>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable(name = "concentration",
... mesh = mesh,
... value = valueLeft)

The order n of the NthOrderDiffusionEquation is determined by twice the number of diffusion
coefficients it is created with, so a single diffusion coefficient (1.,) gives n = 2. The diffusion
equation is again solved with an iterative conjugate gradient solver. We apply Dirichlet boundary
conditions to the left and right and Neumann boundary conditions to the top and bottom.

>>> from fipy.solvers.linearPCGSolver import LinearPCGSolver
>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> from fipy.boundaryConditions.fixedFlux import FixedFlux
>>> from fipy.equations.nthOrderDiffusionEquation import NthOrderDiffusionEquation
>>> eq = NthOrderDiffusionEquation(
... var,
... transientCoeff = 0.,
... diffusionCoeff = (1.,),
... solver = LinearPCGSolver(tolerance = 1.e-15,
... steps = 1000
...),
... boundaryConditions = (FixedValue(mesh.getFacesLeft(),valueLeft),
... FixedValue(mesh.getFacesRight(),valueRight),
... FixedFlux(mesh.getFacesTop(),0.),
... FixedFlux(mesh.getFacesBottom(),0.)
...)
...)

We iterate one timestep to equilibrium:

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator((eq,))
>>> it.timestep()

The result is tested against the expected linear diffusion profile:

>>> Lx = nx * dx
>>> x = mesh.getCellCenters()[:,0]

47

>>> import Numeric
>>> value = valueLeft + (valueRight - valueLeft) * x / Lx
>>> Numeric.allclose(var, value, rtol = 1e-10, atol = 1e-10)
1

If the problem is run interactively, we can view the result:

>>> if __name__ == ’__main__’:
... from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
... viewer = Grid2DGistViewer(var)
... viewer.plot()

5.6 Module examples.diffusion.nthOrder.input4thOrder1D

This example uses the NthOrderBoundaryCondition class to solve the equation

∂4φ

∂x4
= 0

on a 1D mesh of length

>>> L = 1000.

We create an appropriate mesh

>>> nx = 1000
>>> ny = 1
>>> dx = L / nx
>>> dy = 1.
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx, dy, nx, ny)

and initialize the solution variable to 0

>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable(
... name = "concentration",
... mesh = mesh,
... value = 0.)

For this problem, we impose the boundary conditions:

φ = α1 at x = 0
∂φ

∂x
= α2 at x = L

∂2φ

∂x2
= α3 at x = 0

∂3φ

∂x3
= α4 at x = L.

or

48 Module examples.diffusion.nthOrder.input4thOrder1D

>>> alpha1 = 2.
>>> alpha2 = 1.
>>> alpha3 = 4.
>>> alpha4 = -3.

>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> from fipy.boundaryConditions.fixedFlux import FixedFlux
>>> from fipy.boundaryConditions.nthOrderBoundaryCondition \
... import NthOrderBoundaryCondition
>>> boundaryConditions=(
... FixedValue(mesh.getFacesLeft(), alpha1),
... FixedFlux(mesh.getFacesRight(), alpha2),
... NthOrderBoundaryCondition(mesh.getFacesLeft(), alpha3, 2),
... NthOrderBoundaryCondition(mesh.getFacesRight(), alpha4, 3))

We initialize the steady-state equation and use the LinearLUSolver for stability.

>>> from fipy.solvers.linearLUSolver import LinearLUSolver

By assigning two diffusion coefficients

>>> diffusionCoeff = (-1., 1.)

we obtain a fourth-order diffusion equation

>>> from fipy.equations.nthOrderDiffusionEquation import NthOrderDiffusionEquation
>>> eq = NthOrderDiffusionEquation(
... var,
... transientCoeff = 0.0,
... diffusionCoeff = diffusionCoeff,
... solver = LinearLUSolver(tolerance = 1e-11),
... boundaryConditions=boundaryConditions)

We perform one implicit timestep to achieve steady state

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator((eq,))
>>> it.timestep()

The analytical solution is:

φ =
α4

6
x3 +

α3

2
x2 +

(
α2 −

α4

2
L2 − α3L

)
x+ α1

or

>>> x = mesh.getCellCenters()[:,0]
>>> answer = alpha4 / 6. * x**3 + alpha3 / 2. * x**2
>>> answer += (alpha2 - alpha4 / 2. * L**2 - alpha3 * L) * x + alpha1
>>> import Numeric
>>> Numeric.allclose(answer, var, atol = 1e-10)
1

If the problem is run interactively, we can view the result:

49

>>> if __name__ == ’__main__’:
... from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
... viewer = Grid2DGistViewer(var)
... viewer.plot()

50 Module examples.diffusion.nthOrder.input4thOrder1D

Chapter 6

Convection Examples

6.1 Module examples.convection.exponential1D.input

This example solves the steady-state convection-diffusion equation given by:

∇ · (D∇φ+ ~uφ) = 0

with coefficients D = 1 and ~u = (10, 0), or

>>> diffCoeff = 1.
>>> convCoeff = (10.,0.)

We define a 1D mesh

>>> L = 10.
>>> nx = 1000
>>> ny = 1
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(L / nx, L / ny, nx, ny)

and impose the boundary conditions

φ =

0 at x = 0,

1 at x = L,

or

>>> valueLeft = 0.
>>> valueRight = 1.
>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> from fipy.boundaryConditions.fixedFlux import FixedFlux
>>> boundaryConditions = (
... FixedValue(mesh.getFacesLeft(), valueLeft),

51

52 Module examples.convection.exponential1D.input

... FixedValue(mesh.getFacesRight(), valueRight),

... FixedFlux(mesh.getFacesTop(), 0.),

... FixedFlux(mesh.getFacesBottom(), 0.)

...)

The solution variable is initialized to valueLeft:

>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable(
... name = "concentration",
... mesh = mesh,
... value = valueLeft)

The SteadyConvectionDiffusionScEquation object is used to create the equation. It needs to be
passed a convection term instantiator as follows:

>>> from fipy.terms.exponentialConvectionTerm import ExponentialConvectionTerm
>>> from fipy.solvers.linearCGSSolver import LinearCGSSolver
>>> from fipy.equations.stdyConvDiffScEquation import SteadyConvectionDiffusionScEquation
>>> eq = SteadyConvectionDiffusionScEquation(
... var = var,
... diffusionCoeff = diffCoeff,
... convectionCoeff = convCoeff,
... solver = LinearCGSSolver(tolerance = 1.e-15, steps = 2000),
... convectionScheme = ExponentialConvectionTerm,
... boundaryConditions = boundaryConditions
...)

More details of the benefits and drawbacks of each type of convection term can be found
in the numerical section of the manual. Essentially the ExponentialConvectionTerm and
PowerLawConvectionTerm will both handle most types of convection diffusion cases with the
PowerLawConvectionTerm being more efficient.

We iterate to equilibrium

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator((eq,))
>>> it.timestep()

and test the solution against the analytical result

φ =
1− exp(−uxx/D)
1− exp(−uxL/D)

or

>>> axis = 0
>>> x = mesh.getCellCenters()[:,axis]
>>> import Numeric
>>> CC = 1. - Numeric.exp(-convCoeff[axis] * x / diffCoeff)
>>> DD = 1. - Numeric.exp(-convCoeff[axis] * L / diffCoeff)
>>> analyticalArray = CC / DD

53

>>> Numeric.allclose(analyticalArray, var, rtol = 1e-10, atol = 1e-10)
1

If the problem is run interactively, we can view the result:

>>> if __name__ == ’__main__’:
... from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
... viewer = Grid2DGistViewer(var)
... viewer.plot()

6.2 Module examples.convection.exponential1DSource.input

Like examples/diffusion/convection/exponential1D/input.py this example solves a steady-
state convection-diffusion equation, but adds a constant source, S0 = 1, such that

∇ · (D∇φ+ ~uφ) + S0 = 0.

Here, the axes are reversed

>>> nx = 1
>>> ny = 1000

and
vecu = (0, 10) such that

>>> diffCoeff = 1.
>>> convCoeff = (0., 10.)
>>> sourceCoeff = 1.

We define a 1D mesh

>>> L = 10.
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(L / nx, L / ny, nx, ny)

and impose the boundary conditions

φ =

0 at y = 0,

1 at y = L,

or

>>> valueBottom = 0.
>>> valueTop = 1.
>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> from fipy.boundaryConditions.fixedFlux import FixedFlux
>>> boundaryConditions = (
... FixedValue(mesh.getFacesTop(), valueTop),
... FixedValue(mesh.getFacesBottom(), valueBottom),

54 Module examples.convection.exponential1DSource.input

... FixedFlux(mesh.getFacesRight(), 0.),

... FixedFlux(mesh.getFacesLeft(), 0.)

...)

The solution variable is initialized to valueBottom:

>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable(
... name = "concentration",
... mesh = mesh,
... value = valueBottom)

We define the convection-diffusion equation with source

>>> from fipy.terms.exponentialConvectionTerm import ExponentialConvectionTerm
>>> from fipy.solvers.linearLUSolver import LinearLUSolver
>>> from fipy.equations.stdyConvDiffScEquation import SteadyConvectionDiffusionScEquation
>>> eq = SteadyConvectionDiffusionScEquation(
... var = var,
... diffusionCoeff = diffCoeff,
... convectionCoeff = convCoeff,
... sourceCoeff = sourceCoeff,
... solver = LinearLUSolver(tolerance = 1.e-15),
... convectionScheme = ExponentialConvectionTerm,
... boundaryConditions = boundaryConditions
...)

iterate one implicit timestep to equilibrium

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator((eq,))
>>> it.timestep()

and test the solution against the analytical result:

φ = −S0y

uy
+

(
1 +

S0y

uy

)
1− exp(−uyy/D)
1− exp(−uyL/D)

or

>>> axis = 1
>>> y = mesh.getCellCenters()[:,axis]
>>> AA = -sourceCoeff * y / convCoeff[axis]
>>> BB = 1. + sourceCoeff * L / convCoeff[axis]
>>> import Numeric
>>> CC = 1. - Numeric.exp(-convCoeff[axis] * y / diffCoeff)
>>> DD = 1. - Numeric.exp(-convCoeff[axis] * L / diffCoeff)
>>> analyticalArray = AA + BB * CC / DD
>>> Numeric.allclose(analyticalArray, var, rtol = 1e-4, atol = 1e-4)
1

If the problem is run interactively, we can view the result:

55

>>> if __name__ == ’__main__’:
... from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
... viewer = Grid2DGistViewer(var)
... viewer.plot()

56 Module examples.convection.exponential1DSource.input

Chapter 7

Phase Field Examples

Solidification Examples

The following examples exhibit various phenomena in solidification, including dendritic growth and
grain impingement. Further discussion of the models and algorithms can be found in reference [13].

7.1 Module examples.phase.anisotropy.input

In this example we solve a coupled phase and temperature equation to model solidification, and
eventually dendritic growth, from a circular seed in a 2D mesh:

>>> numberOfCells = 40
>>> Length = numberOfCells * 2.5 / 100.
>>> nx = numberOfCells
>>> ny = numberOfCells
>>> dx = Length / nx
>>> dy = Length / ny
>>> radius = Length / 4.
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx,dy,nx,ny)

Dendritic growth will not be observed with this small test system. If you wish to see dendritic
growth reset the following parameters: numberOfCells = 200, steps = 10000, radius = Length
/ 80.

The governing equation for the phase field is given by:

τφ
∂φ

∂t
= α2∇2φ+ φ(1− φ)m2(φ, T)− 2sφ|∇θ| − ε2φ|∇θ|2

57

58 Module examples.phase.anisotropy.input

where

m2(φ, T) = φ− 1
2
− κ1

π
arctan (κ2T)

and the governing equation for temperature is given by:

∂T

∂t
= DT∇2T +

∂φ

∂t

Here the phase and temperature equations are solved with an explicit and implicit technique,
respectively.

The parameters for these equations are

>>> timeStepDuration = 5e-5
>>> phaseParameters = {
... ’tau’ : 3e-4,
... ’epsilon’ : 0.008,
... ’s’ : 0.01,
... ’alpha’ : 0.015,
... ’anisotropy’ : 0.02,
... ’symmetry’ : 4.,
... ’kappa 1’ : 0.9,
... ’kappa 2’ : 20.
... }
>>> temperatureParameters = {
... ’timeStepDuration’ : timeStepDuration,
... ’temperature diffusion’ : 2.25,
... ’latent heat’ : 1.,
... ’heat capacity’ : 1.
... }

The variable theta represents the orientation of the crystal. In this example, it is constant and
thus does not affect the solution.

>>> from fipy.models.phase.theta.modularVariable import ModularVariable
>>> theta = ModularVariable(
... name = ’Theta’,
... mesh = mesh
...)

The phase variable is 0 for a liquid and 1 for a solid. Here we build an example phase variable,
initialized as a liquid,

>>> from fipy.variables.cellVariable import CellVariable
>>> phase = CellVariable(
... name = ’PhaseField’,
... mesh = mesh,
... value = 0.,
... hasOld = 1)

59

The hasOld flag keeps the old value of the variable. This is necessary for a transient solution. In
this example we wish to set up an interior region that is solid. A value of 1 is assigned to the phase
variable on a patch defined by the method:

>>> def circleCells(cell,L = Length):
... x = cell.getCenter()
... r = radius
... c = (Length / 2., Length / 2.)
... if (x[0] - c[0])**2 + (x[1] - c[1])**2 < r**2:
... return 1
... else:
... return 0

This method is passed to mesh.getCells(filter = circleCells) which filters out the required
cells.

>>> interiorCells = mesh.getCells(filter = circleCells)
>>> phase.setValue(1.,interiorCells)

The temperature field is initialized to a value of -0.4 throughout:

>>> temperature = CellVariable(
... name = ’Theta’,
... mesh = mesh,
... value = -0.4,
... hasOld = 1
...)

For both equations, zero flux boundary conditions apply to the exterior of the mesh

>>> from fipy.boundaryConditions.fixedFlux import FixedFlux
>>> boundaryCondition = FixedFlux(mesh.getExteriorFaces(), 0.)

The phase equation requires a mPhi instantiator to represent m2(φ, T) above

>>> from fipy.models.phase.phase.type2MPhiVariable import Type2MPhiVariable

The phase equation is solved with an iterative conjugate gradient solver

>>> from fipy.solvers.linearPCGSolver import LinearPCGSolver

and requires access to the theta and temperature variables

>>> from fipy.models.phase.phase.phaseEquation import PhaseEquation
>>> phaseEq = PhaseEquation(
... phase,
... mPhi = Type2MPhiVariable,
... solver = LinearPCGSolver(
... tolerance = 1.e-15,
... steps = 1000
...),
... boundaryConditions=(boundaryCondition,),
... parameters = phaseParameters,

60 Module examples.phase.anisotropy.input

... fields = {

... ’theta’ : theta,

... ’temperature’ : temperature

... }

...)

The temperature equation is also solved with an iterative conjugate gradient solver and requires
access to the phase variable

>>> from fipy.models.phase.temperature.temperatureEquation import TemperatureEquation
>>> temperatureEq = TemperatureEquation(
... temperature,
... solver = LinearPCGSolver(
... tolerance = 1.e-15,
... steps = 1000
...),
... boundaryConditions=(boundaryCondition,),
... parameters = temperatureParameters,
... fields = {
... ’phase’ : phase
... }
...)

If we are running this example interactively, we create viewers for the phase and temperature fields

>>> if __name__ == ’__main__’:
... from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
... phaseViewer = Grid2DGistViewer(var = phase)
... temperatureViewer = Grid2DGistViewer(var = temperature,
... minVal = -0.5, maxVal =0.5)
... phaseViewer.plot()
... temperatureViewer.plot()

we iterate the solution in time, plotting as we go if running interactively,

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator((phaseEq, temperatureEq))
>>> steps = 10
>>> for i in range(steps):
... it.timestep(dt = timeStepDuration)
... if i%10 == 0 and __name__ == ’__main__’:
... phaseViewer.plot()
... temperatureViewer.plot()

The solution is compared with test data. The test data was created for steps = 10 with a FOR-
TRAN code written by Ryo Kobayashi for phase field modeling. The following code opens the file
test.gz extracts the data and compares it with the phase variable.

>>> import os
>>> testFile = ’test.gz’

61

>>> import examples.phase.anisotropy
>>> gzfile = ’gunzip --fast -c < %s/%s’
>>> gzfile = gzfile%(examples.phase.anisotropy.__path__[0], testFile)
>>> filestream=os.popen(gzfile,’r’)
>>> import cPickle
>>> testData = cPickle.load(filestream)
>>> filestream.close()
>>> import Numeric
>>> phase = Numeric.array(phase)
>>> testData = Numeric.reshape(testData, phase.shape)
>>> Numeric.allclose(phase, testData, rtol = 1e-10, atol = 1e-10)
1

7.2 Module examples.phase.impingement.mesh40x1.input

In this example we solve a coupled phase and orientation equation on a one dimensional grid

>>> nx = 40
>>> ny = 1
>>> Lx = 2.5 * nx / 100.
>>> Ly = 2.5 * ny / 100.
>>> dx = Lx / nx
>>> dy = Ly / ny
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx,dy,nx,ny)

This problem simulates the wet boundary that forms between grains of different orientations. The
phase equation is given by

τφ
∂φ

∂t
= α2∇2φ+ φ(1− φ)m1(φ, T)− 2sφ|∇θ| − ε2φ|∇θ|2

where
m1(φ, T) = φ− 1

2
− Tφ(1− φ)

and the orientation equation is given by

P (ε|∇θ|)τθφ2 ∂θ

∂t
= ∇ ·

[
φ2

(
s

|∇θ|
+ ε2

)
∇θ

]
where

P (w) = 1− exp (−βw) +
µ

ε
exp (−βw)

The initial conditions for this problem are set such that φ = 1 for 0 ≤ x ≤ Lx and

θ =

1 for 0 ≤ x < Lx/2,

0 for Lx/2 ≤ x ≤ Lx.

62 Module examples.phase.impingement.mesh40x1.input

Here the phase and orientation equations are solved with an explicit and implicit technique respec-
tively.

The parameters for these equations are

>>> timeStepDuration = 0.02
>>> phaseParameters = {
... ’tau’ : 0.1,
... }
>>> thetaParameters = {
... ’small value’ : 1e-6,
... ’beta’ : 1e5,
... ’mu’ : 1e3,
... ’tau’ : 0.01,
... ’gamma’ : 1e3
... }

with the shared parameters

>>> sharedPhaseThetaParameters = {
... ’epsilon’ : 0.008,
... ’s’ : 0.01,
... ’anisotropy’ : 0.0,
... ’alpha’ : 0.015,
... ’symmetry’ : 4.
... }
>>> for key in sharedPhaseThetaParameters.keys():
... phaseParameters[key] = sharedPhaseThetaParameters[key]
... thetaParameters[key] = sharedPhaseThetaParameters[key]

The system is held isothermal at

>>> temperature = 1.

and is initially solid everywhere

>>> from fipy.variables.cellVariable import CellVariable
>>> phase = CellVariable(
... name = ’PhaseField’,
... mesh = mesh,
... value = 1.
...)

The left and right halves of the domain are given different orientations

>>> from fipy.models.phase.theta.modularVariable import ModularVariable
>>> theta = ModularVariable(
... name = ’Theta’,
... mesh = mesh,
... value = 1.,
... hasOld = 1

63

...)
>>> theta.setValue(0., mesh.getCells(filter = lambda cell: cell.getCenter()[0] > Lx / 2.))

For both equations, zero flux boundary conditions apply to the exterior of the mesh

>>> from fipy.boundaryConditions.fixedFlux import FixedFlux
>>> boundaryCondition = FixedFlux(mesh.getExteriorFaces(), 0.)

The phase equation requires a mPhi instantiator to represent m1(φ, T) above

>>> from fipy.models.phase.phase.type1MPhiVariable import Type1MPhiVariable

The phase equation is solved with an iterative conjugate gradient solver

>>> from fipy.solvers.linearPCGSolver import LinearPCGSolver

and requires access to the theta and temperature variables

>>> from fipy.models.phase.phase.phaseEquation import PhaseEquation
>>> phaseEq = PhaseEquation(
... phase,
... mPhi = Type1MPhiVariable,
... solver = LinearPCGSolver(
... tolerance = 1.e-15,
... steps = 1000
...),
... boundaryConditions=(boundaryCondition,),
... parameters = phaseParameters,
... fields = {
... ’theta’ : theta,
... ’temperature’ : temperature
... }
...)

The theta equation is also solved with an iterative conjugate gradient solver and requires access
to the phase variable

>>> from fipy.models.phase.theta.thetaEquation import ThetaEquation
>>> thetaEq = ThetaEquation(
... var = theta,
... solver = LinearPCGSolver(
... tolerance = 1.e-15,
... steps = 2000
...),
... boundaryConditions = (boundaryCondition,),
... parameters = thetaParameters,
... fields = {
... ’phase’ : phase
... }
...)

64 Module examples.phase.impingement.mesh40x1.input

If the example is run interactively, we create viewers for the phase and orientation variables. Rather
than viewing the raw orientation, which is not meaningful in the liquid phase, we weight the
orientation by the phase

>>> if __name__ == ’__main__’:
... from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
... phaseViewer = Grid2DGistViewer(var = phase, palette = ’rainbow.gp’,
... minVal = 0., maxVal = 1., grid = 0)
... from Numeric import pi
... thetaProd = -pi + phase * (theta + pi)
... thetaProductViewer = Grid2DGistViewer(var = thetaProd , palette = ’rainbow.gp’,
... minVal = -pi, maxVal = pi, grid = 0)
... phaseViewer.plot()
... thetaProductViewer.plot()

we iterate the solution in time, plotting as we go if running interactively,

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator((thetaEq, phaseEq))
>>> steps = 10
>>> for i in range(steps):
... it.timestep(dt = timeStepDuration)
... if __name__ == ’__main__’:
... phaseViewer.plot()
... thetaProductViewer.plot()

The solution is compared with test data. The test data was created with steps = 10 with a
FORTRAN code written by Ryo Kobayashi for phase field modeling. The following code opens the
file test.gz extracts the data and compares it with the theta variable.

>>> import os
>>> testFile = ’test.gz’
>>> import examples.phase.impingement.mesh40x1
>>> gzfile = ’gunzip --fast -c < %s/%s’
>>> gzfile = gzfile%(examples.phase.impingement.mesh40x1.__path__[0], testFile)
>>> filestream=os.popen(gzfile,’r’)
>>> import cPickle
>>> testData = cPickle.load(filestream)
>>> filestream.close()
>>> import Numeric
>>> theta = Numeric.array(theta)
>>> testData = Numeric.reshape(testData, theta.shape)
>>> Numeric.allclose(theta, testData, rtol = 1e-10, atol = 1e-10)
1

65

7.3 Module examples.phase.impingement.mesh20x20.base

In the following examples, we solve the same set of equations as in:

$ examples/phase/impingement/mesh40x1/input.py

with different initial conditions and a 2D mesh:

>>> nx = 20
>>> ny = 20
>>> Lx = 2.5 * nx / 100.
>>> Ly = 2.5 * ny / 100.
>>> dx = Lx / nx
>>> dy = Ly / ny
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx,dy,nx,ny)

The initial conditions are given by φ = 1 and

θ =

2π
3 for x2 − y2 < L/2,
−2π

3 for (x− L)2 − y2 < L/2,
−2π

3 + 0.3 for x2 − (y − L)2 < L/2,
2π
3 for (x− L)2 − (y − L)2 < L/2.

This defines four solid regions with different orientations. Solidification occurs and then boundary
wetting occurs where the orientation varies.

The parameters for this example are

>>> timeStepDuration = 0.02
>>> phaseParameters = {
... ’tau’ : 0.1,
... ’time step duration’ : timeStepDuration
... }
>>> thetaParameters = {
... ’small value’ : 1e-6,
... ’beta’ : 1e5,
... ’mu’ : 1e3,
... ’tau’ : 0.01,
... ’gamma’ : 1e3
... }

with the shared parameters

>>> sharedPhaseThetaParameters = {
... ’epsilon’ : 0.008,
... ’s’ : 0.01,
... ’anisotropy’ : 0.0,

66 Module examples.phase.impingement.mesh20x20.base

... ’alpha’ : 0.015,

... ’symmetry’ : 4.

... }
>>> for key in sharedPhaseThetaParameters.keys():
... phaseParameters[key] = sharedPhaseThetaParameters[key]
... thetaParameters[key] = sharedPhaseThetaParameters[key]

This time, the system is held isothermal at

>>> temperature = 10.

and is initialized to liquid everywhere

>>> from fipy.variables.cellVariable import CellVariable
>>> phase = CellVariable(
... name = ’PhaseField’,
... mesh = mesh,
... value = 0.
...)

The orientation is initialized to a uniform value to denote the randomly oriented liquid phase

>>> from Numeric import pi
>>> from fipy.models.phase.theta.modularVariable import ModularVariable
>>> theta = ModularVariable(
... name = ’Theta’,
... mesh = mesh,
... value = -pi + 0.0001,
... hasOld = 1
...)

Four different solid circular domains are created at each corner of the domain with appropriate
orientations

>>> def cornerCircle(cell):
... x = cell.getCenter()[0]
... y = cell.getCenter()[1]
... if ((x - a)**2 + (y - b)**2) < (Lx / 2.)**2:
... return 1
... else:
... return 0

>>> for a, b, thetaValue in ((0., 0., 2. * pi / 3.),
... (Lx, 0., -2. * pi / 3.),
... (0., Ly, -2. * pi / 3. + 0.3),
... (Lx, Ly, 2. * pi / 3.)):
... cells = mesh.getCells(filter = cornerCircle)
... phase.setValue(1., cells)
... theta.setValue(thetaValue, cells)

For both equations, zero flux boundary conditions apply to the exterior of the mesh

67

>>> from fipy.boundaryConditions.fixedFlux import FixedFlux
>>> boundaryCondition = FixedFlux(mesh.getExteriorFaces(), 0.)

The phase equation requires a mPhi instantiator to represent m1(φ, T) above

>>> from fipy.models.phase.phase.type1MPhiVariable import Type1MPhiVariable

The phase equation is solved with an iterative conjugate gradient solver

>>> from fipy.solvers.linearPCGSolver import LinearPCGSolver

and requires access to the theta and temperature variables

>>> from fipy.models.phase.phase.phaseEquation import PhaseEquation
>>> phaseEq = PhaseEquation(
... phase,
... mPhi = Type1MPhiVariable,
... solver = LinearPCGSolver(
... tolerance = 1.e-15,
... steps = 1000
...),
... boundaryConditions=(boundaryCondition,),
... parameters = phaseParameters,
... fields = {
... ’theta’ : theta,
... ’temperature’ : temperature
... }
...)

The theta equation is also solved with an iterative conjugate gradient solver and requires access
to the phase variable

>>> from fipy.models.phase.theta.thetaEquation import ThetaEquation
>>> thetaEq = ThetaEquation(
... var = theta,
... solver = LinearPCGSolver(
... tolerance = 1.e-15,
... steps = 2000
...),
... boundaryConditions = (boundaryCondition,),
... parameters = thetaParameters,
... fields = {
... ’phase’ : phase
... }
...)

If the example is run interactively, we create viewers for the phase and orientation variables. Rather
than viewing the raw orientation, which is not meaningful in the liquid phase, we weight the
orientation by the phase

>>> if __name__ == ’__main__’:

68 Module examples.phase.impingement.mesh20x20.input

... from fipy.viewers.grid2DGistViewer import Grid2DGistViewer

... phaseViewer = Grid2DGistViewer(var = phase, palette = ’rainbow.gp’,

... minVal = 0., maxVal = 1., grid = 0)

... from Numeric import pi

... thetaProd = -pi + phase * (theta + pi)

... thetaProductViewer = Grid2DGistViewer(var = thetaProd , palette = ’rainbow.gp’,

... minVal = -pi, maxVal = pi, grid = 0)

... phaseViewer.plot()

... thetaProductViewer.plot()

The solution will be tested against data that was created with steps = 10 with a FORTRAN code
written by Ryo Kobayashi for phase field modeling. The following code opens the file test.gz
extracts the data and compares it with the theta variable.

>>> import os
>>> testFile = ’test.gz’
>>> import examples.phase.impingement.mesh20x20
>>> gzfile = ’gunzip --fast -c < %s/%s’
>>> gzfile = gzfile%(examples.phase.impingement.mesh20x20.__path__[0], testFile)
>>> filestream=os.popen(gzfile,’r’)
>>> import cPickle
>>> testData = cPickle.load(filestream)
>>> filestream.close()
>>> import Numeric
>>> testData = Numeric.reshape(testData, Numeric.array(theta).shape)

Finally, we create an iterator

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator((thetaEq, phaseEq))
>>> steps = 10

The preceding initialization steps are used in the next few examples.

7.3.1 Functions

script()

Return the documentation for this module as a script that can be invoked to initialize other
scripts.

7.4 Module examples.phase.impingement.mesh20x20.input

We initialize the system by running the base script

>>> import examples.phase.impingement.mesh20x20.base
>>> exec(examples.phase.impingement.mesh20x20.base.script())

69

We iterate the solution in time, plotting as we go if running interactively,

>>> for i in range(steps):
... it.timestep(dt = timeStepDuration)
... if __name__ == ’__main__’:
... phaseViewer.plot()
... thetaProductViewer.plot()

The solution is compared against Ryo Kobayashi’s test data

>>> theta.allclose(testData, rtol = 1e-10, atol = 1e-10)
1

7.5 Module examples.phase.impingement.restart.input

In this example we solve the same set of equations as in
examples/phase/impingement/mesh20x20/input.py but a restart method is demonstrated.

We again initialize the system by running the base script

>>> import examples.phase.impingement.mesh20x20.base
>>> exec(examples.phase.impingement.mesh20x20.base.script())

but this time we only iterate for half as many time steps

>>> for i in range(steps/2):
... it.timestep(dt = timeStepDuration)
... if __name__ == ’__main__’:
... phaseViewer.plot()
... thetaProductViewer.plot()

We confirm that the solution has not yet converged to that given by Ryo Kobayashi’s FORTRAN
code:

>>> theta.allclose(testData, rtol = 1e-10, atol = 1e-10)
0

We save the variables to disk

>>> import fipy.tools.dump as dump
>>> import tempfile
>>> import os
>>> tmp = tempfile.gettempdir()
>>> fileName = os.path.join(tmp, ’data’)
>>> dump.write({’phase’ : phase, ’theta’ : theta, ’mesh’ : mesh}, fileName)

and then recall them to test the data pickling mechanism

>>> data = dump.read(fileName)
>>> newPhase = data[’phase’]
>>> newTheta = data[’theta’]

70 Module examples.phase.impingement.restart.input

>>> newMesh = data[’mesh’]

We rebuild the equations:

>>> newThetaEq = ThetaEquation(
... var = newTheta,
... solver = LinearPCGSolver(
... tolerance = 1.e-15,
... steps = 2000
...),
... boundaryConditions = (
... FixedFlux(newMesh.getExteriorFaces(), 0.),
...),
... parameters = thetaParameters,
... fields = {
... ’phase’ : newPhase
... }
...)

>>> newPhaseEq = PhaseEquation(
... var = newPhase,
... mPhi = Type1MPhiVariable,
... solver = LinearPCGSolver(
... tolerance = 1.e-15,
... steps = 1000
...),
... boundaryConditions = (
... FixedFlux(newMesh.getExteriorFaces(), 0.),
...),
... parameters = phaseParameters,
... fields = {
... ’theta’ : newTheta,
... ’temperature’ : temperature
... }
...)

the iterator:

>>> newIt = Iterator((newThetaEq, newPhaseEq))

and, if the example is run interactively, we recreate the viewers:

>>> if __name__ == ’__main__’:
... from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
... newPhaseViewer = Grid2DGistViewer(var = newPhase, palette = ’rainbow.gp’,
... minVal = 0., maxVal = 1., grid = 0)
... from Numeric import pi
... newThetaProd = -pi + phase * (newTheta + pi)
... newThetaProductViewer = \
... Grid2DGistViewer(var = newThetaProd , palette = ’rainbow.gp’,

71

... minVal = -pi, maxVal = pi, grid = 0)

... newPhaseViewer.plot()

... newThetaProductViewer.plot()

and finish doing the iterations

>>> for i in range(steps - steps/2):
... newIt.timestep(dt = timeStepDuration)
... if __name__ == ’__main__’:
... newPhaseViewer.plot()
... newThetaProductViewer.plot()

Finally, we check that the results have at last converged to Ryo Kobayashi’s FORTRAN code:

>>> newTheta.allclose(testData, rtol = 1e-10, atol = 1e-10)
1

72 Module examples.elphf.phase.input1D

Electrochemistry Examples

The following examples exhibit various parts of a model to study electrochemical interfaces. In a pair
of papers, Guyer, Boettinger, Warren and McFadden [14, 15] have shown that an electrochemical
interface can be modeled by an equation for the phase field ξ

∂ξ

∂t
= Mξκξ∇2ξ −Mξ

n∑
j=1

Cj

[
p′(ξ)∆µ◦j + g′(ξ)Wj

]
+Mξ

ε′(ξ)
2

(∇φ)2

a set of diffusion equations for the concentrations Cj , for j = 2, . . . , n − 1, of the substitutional
elements

∂Cj

∂t
= Dj∇2Cj

+Dj∇ · Cj

1−
∑n−1

k=2
k 6=j

Ck

n−1∑
i=2
i 6=j

∇Ci + Cn

[
p′(ξ)∆µ◦jn + g′(ξ)Wjn

]
∇ξ + Cnzjn∇φ

a diffusion equation for the concentration Ce− of electrons

∂Ce−

∂t
= De−∇2Ce− +De−∇ · Ce− {[p′(ξ)∆µ◦e− + g′(ξ)We−]∇ξ + ze−∇φ}

and Poisson’s equation for the electrostatic potential φ

∇ · (ε∇φ) + ρ = 0

Mξ is the phase field mobility, κξ is the phase field gradient energy coefficient, p′(ξ) = 30ξ2 (1− ξ)2,
and g′(ξ) = 2ξ (1− ξ) (1− 2ξ). For a given species j, ∆µ◦j is the standard chemical potential
difference between the electrode and electrolyte for a pure material, Wj is the magnitude of the
energy barrier in the double-well free energy function, zj is the valence, and Dj is the self diffusivity.
∆µ◦jn, Wjn, and zjn are the differences of the respective quantities ∆µ◦j , Wj , and zj between
substitutional species j and the solvent species n. The total charge is denoted by ρ ≡

∑n
j=1 zjCj .

The module fipy.models.elphf has been developed to solve this coupled set of equations. Al-
though unresolved stiffnesses make the full solution intractable in FiPy, we can demonstrate the use
of various parts of the elphf module.

7.6 Module examples.elphf.phase.input1D

A simple 1D phase-field problem to test the PhaseEquation element of ElPhF.

73

The single-component phase field governing equation can be represented as

1
Mξ

∂ξ

∂t
= κξ∇2ξ − 2ξ(1− ξ)(1− 2ξ)W

where ξ is the phase field, t is time, Mξ is the phase field mobility, κξ is the phase field gradient
energy coefficient, and W is the phase field barrier energy. We solve the problem on a 1D mesh

>>> nx = 400
>>> dx = 0.01
>>> ny = 1
>>> dy = dx
>>> L = nx * dx
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx = dx, dy = dy, nx = nx, ny = ny)

Rather than rewriting the same code in every electrochemistry example, we use the ElPhF module

>>> import fipy.models.elphf.elphf as elphf

to build the approriate variable fields from

>>> parameters = {
... ’time step duration’: 10000,
... ’phase’: {
... ’name’: "xi",
... ’mobility’: 1.,
... ’gradient energy’: 0.025,
... ’value’: 1.
... },
... ’solvent’: {
... ’standard potential’: 0.,
... ’barrier height’: 1.
... }
... }

>>> fields = elphf.makeFields(mesh = mesh, parameters = parameters)

We separate the phase field into electrode and electrolyte regimes

>>> setCells = mesh.getCells(filter = lambda cell: cell.getCenter()[0] > L/2)
>>> fields[’phase’].setValue(1.)
>>> fields[’phase’].setValue(0.,setCells)

We use the ElPhF module again to create governing equations from the fields

>>> equations = elphf.makeEquations(mesh = mesh,
... fields = fields,
... parameters = parameters)

If we are running interactively, we will want to see the results

74 Module examples.elphf.diffusion.input1D

>>> if __name__ == ’__main__’:
... from fipy.viewers.gist1DViewer import Gist1DViewer
... viewer = Gist1DViewer(vars = (fields[’phase’],))
... viewer.plot()

Now, we iterate to equilibrium, plotting as we go

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator(equations = equations)
>>> for i in range(50):
... it.timestep(1)
... if __name__ == ’__main__’:
... viewer.plot()

The phase field has the expected analytical form

ξ(x) =
1
2
(1− tanh

x− L/2
2d

)

where the interfacial thickness is given by d =
√
κξ/W . We verify that the correct equilibrium

solution is attained

>>> x = mesh.getCellCenters()[:,0]

>>> import Numeric
>>> d = Numeric.sqrt(parameters[’phase’][’gradient energy’]
... / (parameters[’solvent’][’barrier height’]))
>>> analyticalArray = (1. - Numeric.tanh((x - L/2.)/(2.*d))) / 2.

>>> fields[’phase’].allclose(analyticalArray, rtol = 1e-4, atol = 1e-4)
1

7.7 Module examples.elphf.diffusion.input1D

A simple 1D three-component diffusion problem to test the ConcentrationEquation element of
ElPhF. The diffusion equation for each species in single-phase multicomponent system can be
expressed as

∂Cj

∂t
= Djj∇2Cj +Djj∇ ·

 Cj

1−
∑n−1

k=2
k 6=j

Ck

n−1∑
i=2
i 6=j

∇Ci

where Cj is the concentration of the jth species, t is time, Djj is the self-diffusion coefficient of
the jth species, and

∑n−1
i=2
i 6=j

represents the summation over all substitutional species in the system,

excluding the solvent and the component of interest.

We solve the problem on a 1D mesh

75

>>> nx = 40
>>> dx = 1.
>>> ny = 1
>>> dy = 1
>>> L = nx * dx
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx = dx, dy = dy, nx = nx, ny = ny)

The parameters for this problem are

>>> parameters = {
... ’time step duration’: 10000,
... ’solvent’: {
... ’standard potential’: 0.,
... ’barrier height’: 0.
... }
... }

The ElPhF module allows the modeling of an arbitrary number of components, specified simply by
providing a Tuple of species parameters

>>> parameters[’substitutionals’] = (
... {
... ’name’: "c1",
... ’diffusivity’: 1.,
... ’standard potential’: 1.,
... ’barrier height’: 1.
... },
... {
... ’name’: "c2",
... ’diffusivity’: 1.,
... ’standard potential’: 1.,
... ’barrier height’: 1.
... }
...)

We use ElPhF to create the variable fields

>>> import fipy.models.elphf.elphf as elphf
>>> fields = elphf.makeFields(mesh = mesh, parameters = parameters)

and we separate the solution domain into two different concentration regimes

>>> setCells = mesh.getCells(filter = lambda cell: cell.getCenter()[0] > L/2)
>>> fields[’substitutionals’][0].setValue(0.3)
>>> fields[’substitutionals’][0].setValue(0.6,setCells)
>>> fields[’substitutionals’][1].setValue(0.6)
>>> fields[’substitutionals’][1].setValue(0.3,setCells)

We use ElPhF again to create the governing equations for the fields

76 Module examples.elphf.diffusion.input1Ddimensional

>>> equations = elphf.makeEquations(mesh = mesh,
... fields = fields,
... parameters = parameters
...)

If we are running interactively, we create a viewer to see the results

>>> if __name__ == ’__main__’:
... from fipy.viewers.gist1DViewer import Gist1DViewer
... viewer = Gist1DViewer(vars = (fields[’solvent’],) + fields[’substitutionals’],
... limits = (’e’, ’e’, 0, 1))
... viewer.plot()

Note

the Gist1DViewer is capable of plotting multiple fields

Now, we iterate the problem to equilibrium, plotting as we go

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator(equations = equations)
>>> for i in range(40):
... it.timestep(dt = parameters[’time step duration’])
... if __name__ == ’__main__’:
... viewer.plot()

Since there is nothing to maintain the concentration separation in this problem, we verify that the
concentrations have become uniform

>>> fields[’substitutionals’][0].allclose(0.45, rtol = 1e-7, atol = 1e-7)
1
>>> fields[’substitutionals’][1].allclose(0.45, rtol = 1e-7, atol = 1e-7)
1

7.8 Module examples.elphf.diffusion.input1Ddimensional

In this example, we present the same three-component diffusion problem introduced in
examples/elphf/input1D.py but we demonstrate FiPy’s facility to use dimensional quantities.

>>> from fipy.tools.dimensions.physicalField import PhysicalField

We solve the problem on a 40 mm long 1D mesh

>>> nx = 40
>>> dx = PhysicalField(1.,"mm")
>>> ny = 1
>>> dy = 1
>>> L = nx * dx
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx = dx, dy = dy, nx = nx, ny = ny)

77

The dimensional parameters for this problem are

>>> parameters = {
... ’time step duration’: "1000 s",
... ’solvent’: {
... ’standard potential’: 0.,
... ’barrier height’: 0.
... }
... }

>>> parameters[’substitutionals’] = (
... {
... ’name’: "c1",
... ’diffusivity’: "1.e-9 m**2/s",
... ’standard potential’: 1.,
... ’barrier height’: 1.
... },
... {
... ’name’: "c2",
... ’diffusivity’: "1.e-9 m**2/s",
... ’standard potential’: 1.,
... ’barrier height’: 1.
... }
...)

We use ElPhF to create the variable fields

>>> import fipy.models.elphf.elphf as elphf
>>> fields = elphf.makeFields(mesh = mesh, parameters = parameters)

and we separate the solution domain into two different concentration regimes

>>> setCells = mesh.getCells(filter = lambda cell:
... cell.getCenter()[0] > mesh.getPhysicalShape()[0]/2)
>>> fields[’substitutionals’][0].setValue("0.3 mol/m**3")
>>> fields[’substitutionals’][0].setValue("0.6 mol/m**3",setCells)
>>> fields[’substitutionals’][1].setValue("0.6 mol/m**3")
>>> fields[’substitutionals’][1].setValue("0.3 mol/m**3",setCells)

We use ElPhF again to create the governing equations for the fields

>>> equations = elphf.makeEquations(mesh = mesh,
... fields = fields,
... parameters = parameters
...)

If we are running interactively, we create a viewer to see the results

>>> if __name__ == ’__main__’:
... from fipy.viewers.gist1DViewer import Gist1DViewer
... viewer = Gist1DViewer(vars = (fields[’solvent’],) + fields[’substitutionals’],

78 Module examples.elphf.poisson.input1DrightCharge

... limits = (’e’, ’e’, 0, 1))

... viewer.plot()

Now, we iterate the problem to equilibrium, plotting as we go

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator(equations = equations)
>>> for i in range(40):
... it.timestep(dt = 10000)
... if __name__ == ’__main__’:
... viewer.plot()

Since there is nothing to maintain the concentration separation in this problem, we verify that the
concentrations have become uniform

>>> fields[’substitutionals’][0].getScaled().allclose("0.45 mol/m**3",
... atol = "1e-7 mol/m**3", rtol = 1e-7)
1
>>> fields[’substitutionals’][1].getScaled().allclose("0.45 mol/m**3",
... atol = "1e-7 mol/m**3", rtol = 1e-7)
1

Note

The absolute tolerance atol must be in units compatible with the value to be checked, but
the relative tolerance rtol is dimensionless.

7.9 Module examples.elphf.poisson.input1DrightCharge

A simple problem to test the PoissonEquation element of ElPhF on a 1D mesh

>>> nx = 200
>>> dx = 0.01
>>> L = nx * dx
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx = dx, dy = dx, nx = nx, ny = 1)

The dimensionless Poisson equation is

∇ · (ε∇ψ) = −ρ = −
n∑

j=1

zjCj

where ψ is the electrostatic potential, ε is the permittivity, ρ is the charge density, Cj is the
concentration of the jth component, and zj is the valence of the jth component.

We examine a fixed distribution of electrons with ze− = −1 and and we let the permittivity ε = 1.
In the ElPhF construction, electrons are treated as interstitial elements, which can diffuse freely
without displacing other components

79

>>> parameters = {
... ’potential’: {
... ’name’: "psi",
... ’permittivity’: 1.,
... },
... ’interstitials’: (
... {
... ’name’: "e-",
... ’valence’: -1,
... ’diffusivity’: 0
... },
...)
... }

We have set the diffusivity of electrons to zero to keep them from moving due to electromigration.

We again let the ElPhF module construct the appropriate fields and governing equations

>>> import fipy.models.elphf.elphf as elphf
>>> fields = elphf.makeFields(mesh = mesh, parameters = parameters)
>>> equations = elphf.makeEquations(mesh = mesh,
... fields = fields,
... parameters = parameters)

We segregate all of the electrons to one side of the domain

Ce− =

0 for x ≤ L/2,

1 for x > L/2.

>>> setCells = mesh.getCells(filter = lambda cell: cell.getCenter()[0] > L/2.)
>>> fields[’interstitials’][0].setValue(0.)
>>> fields[’interstitials’][0].setValue(1.,setCells)

and iterate one implicit timestep to equilibrate the electrostatic potential

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator(equations = equations)
>>> it.timestep()

This problem has the analytical solution

ψ(x) =

−x for x ≤ L/2,
(x−1)2

2 − x for x > L/2.

We verify that the correct equilibrium is attained

>>> x = mesh.getCellCenters()[:,0]

>>> import Numeric
>>> analyticalArray = Numeric.where(x < 1, -x, ((x-1)**2)/2 - x)

80 Module examples.elphf.phaseDiffusion.input1Dbinary

>>> fields[’potential’].allclose(analyticalArray, rtol = 2e-5, atol = 2e-5)
1

If we are running the example interactively, we view the result

>>> if __name__ == ’__main__’:
... from fipy.viewers.gist1DViewer import Gist1DViewer
... viewer = Gist1DViewer(vars = (fields[’charge’], fields[’potential’]))
... viewer.plot()

7.10 Module examples.elphf.phaseDiffusion.input1Dbinary

This example combines a phase field problem, as given in examples/elphf/input1Dphase.py, with
a binary diffusion problem, such as described in the ternary example examples/elphf/input1D.py,
on a 1D mesh

>>> nx = 400
>>> dx = 0.01
>>> L = nx * dx
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx = dx, dy = dx, nx = nx, ny = 1)

The problem parameters are

>>> parameters = {
... ’time step duration’: 10000,
... ’substitutional molar volume’: 1,
... ’phase’: {
... ’name’: "xi",
... ’mobility’: 1.,
... ’gradient energy’: 0.1,
... ’value’: 1
... },
... }

The thermodynamic parameters are chosen to give a solid phase rich in the solute and a liquid
phase rich in the solvent

>>> import Numeric
>>> parameters[’solvent’] = {
... ’standard potential’: Numeric.log(.7/.3),
... ’barrier height’: 1.
... }

>>> parameters[’substitutionals’] = (
... {
... ’name’: "c1",
... ’diffusivity’: 1.,

81

... ’standard potential’: Numeric.log(.3/.7),

... ’barrier height’: parameters[’solvent’][’barrier height’],

... },

...)

We again let the ElPhF module create the appropriate fields and equations

>>> import fipy.models.elphf.elphf as elphf
>>> fields = elphf.makeFields(mesh = mesh, parameters = parameters)
>>> equations = elphf.makeEquations(mesh = mesh,
... fields = fields,
... parameters = parameters)

We start with a sharp phase boundary

ξ =

1 for x ≤ L/2,

0 for x > L/2,

or

>>> setCells = mesh.getCells(filter = lambda cell: cell.getCenter()[0] > L/2)
>>> fields[’phase’].setValue(1.)
>>> fields[’phase’].setValue(0.,setCells)

and with a uniform concentration field C1 = 0.5. or

>>> fields[’substitutionals’][0].setValue(0.5)

If running interactively, we create viewers to display the results

>>> if __name__ == ’__main__’:
... from fipy.viewers.gist1DViewer import Gist1DViewer
...
... phaseViewer = Gist1DViewer(vars = (fields[’phase’],))
... concViewer = Gist1DViewer(vars = (fields[’solvent’],) + fields[’substitutionals’],
... limits = (’e’, ’e’, 0, 1))
... phaseViewer.plot()
... concViewer.plot()

This problem does not have an analytical solution, so after iterating to equilibrium

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator(equations = equations)
>>> for i in range(50):
... it.timestep()
... if __name__ == ’__main__’:
... phaseViewer.plot()
... concViewer.plot()

we confirm that the far-field phases have remained separated

82 Module examples.elphf.phaseDiffusion.input1DternaryAndElectrons

>>> ends = Numeric.take(fields[’phase’], (0,-1))
>>> Numeric.allclose(ends, (1.0, 0.0), rtol = 2e-3, atol = 2e-3)
1

and that the concentration field has appropriately segregated into solute rich and solute poor phases.

>>> ends = Numeric.take(fields[’substitutionals’][0], (0,-1))
>>> Numeric.allclose(ends, (0.7, 0.3), rtol = 2e-3, atol = 2e-3)
1

7.11 Module examples.elphf.phaseDiffusion.input1DternaryAndElectrons

This example adds two more components to examples/elphf/input1DphaseBinary.py one of
which is another substitutional species and the other represents electrons and diffuses intertersti-
tially.

We start by defining a 1D mesh

>>> nx = 400
>>> dx = 0.01
>>> L = nx * dx
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx = dx, dy = dx, nx = nx, ny = 1)

The problem parameters are

>>> parameters = {
... ’time step duration’: 10000,
... ’substitutional molar volume’: 1.,
... ’phase’: {
... ’name’: "xi",
... ’mobility’: 1.,
... ’gradient energy’: 0.025,
... ’value’: 1.
... }
... }

The thermodynamic parameters are chosen to give a solid phase rich in electrons and the solvent
and a liquid phase rich in the two substitutional species

>>> import Numeric
>>> parameters[’solvent’] = {
... ’standard potential’: Numeric.log(.4/.6) - Numeric.log(1.3/1.4),
... ’barrier height’: 1.
... }

>>> parameters[’interstitials’] = (
... {
... ’name’: "c1",

83

... ’diffusivity’: 1.,

... ’standard potential’: Numeric.log(.3/.4) - Numeric.log(1.3/1.4),

... ’barrier height’: 0.,

... },

...)

>>> parameters[’substitutionals’] = (
... {
... ’name’: "c2",
... ’diffusivity’: 1.,
... ’standard potential’: Numeric.log(.4/.3) - Numeric.log(1.3/1.4),
... ’barrier height’: parameters[’solvent’][’barrier height’],
... },
... {
... ’name’: "c3",
... ’diffusivity’: 1.,
... ’standard potential’: Numeric.log(.2/.1) - Numeric.log(1.3/1.4),
... ’barrier height’: parameters[’solvent’][’barrier height’],
... },
...)

We again let the ElPhF module create the appropriate fields and equations

>>> import fipy.models.elphf.elphf as elphf
>>> fields = elphf.makeFields(mesh = mesh, parameters = parameters)
>>> equations = elphf.makeEquations(mesh = mesh,
... fields = fields,
... parameters = parameters)

Once again, we start with a sharp phase boundary

>>> setCells = mesh.getCells(filter = lambda cell: cell.getCenter()[0] > L/2)
>>> fields[’phase’].setValue(1.)
>>> fields[’phase’].setValue(0.,setCells)

and with uniform concentration fields, with the interstitial concentration C1 = 0.35 and the substi-
tutional concentrations C2 = 0.35 and C3 = 0.15.

>>> fields[’interstitials’][0].setValue(0.35)
>>> fields[’substitutionals’][0].setValue(0.35)
>>> fields[’substitutionals’][1].setValue(0.15)

If running interactively, we create viewers to display the results

>>> if __name__ == ’__main__’:
... from fipy.viewers.gist1DViewer import Gist1DViewer
...
... phaseViewer = Gist1DViewer(vars = (fields[’phase’],))
... concViewer = Gist1DViewer(vars = (fields[’solvent’],)
... + fields[’substitutionals’]
... + fields[’interstitials’],

84 Module examples.elphf.phaseDiffusion.input1DternaryAndElectrons

... limits = (’e’, ’e’, 0, 1))

... phaseViewer.plot()

... concViewer.plot()

Again, this problem does not have an analytical solution, so after iterating to equilibrium

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator(equations = equations)
>>> for i in range(50):
... it.timestep()
... if __name__ == ’__main__’:
... phaseViewer.plot()
... concViewer.plot()

we confirm that the far-field phases have remained separated

>>> ends = Numeric.take(fields[’phase’], (0,-1))
>>> Numeric.allclose(ends, (1.0, 0.0), rtol = 1e-5, atol = 1e-5)
1

and that the concentration fields has appropriately segregated into into their respective phases

>>> ends = Numeric.take(fields[’interstitials’][0], (0,-1))
>>> Numeric.allclose(ends, (0.4, 0.3), rtol = 3e-3, atol = 3e-3)
1
>>> ends = Numeric.take(fields[’substitutionals’][0], (0,-1))
>>> Numeric.allclose(ends, (0.3, 0.4), rtol = 3e-3, atol = 3e-3)
1
>>> ends = Numeric.take(fields[’substitutionals’][1], (0,-1))
>>> Numeric.allclose(ends, (0.1, 0.2), rtol = 3e-3, atol = 3e-3)
1

Chapter 8

Level Set Examples

The Level Set Method (LSM) is a popular interface tracking method. Further details of the LSM
and descriptions of the algorithms used in FiPy can be found in Sethian’s Level Set book [16].

8.1 Module examples.levelSet.distanceFunction.oneD.input

Here we solve the level set equation in one dimension. The level set equation solves a variable
so that its value at any point in the domain is the distance from the zero level set. This can be
represented succinctly in the following equation with a boundary condition at the zero level set
such that,

∂φ

∂x
= 1

with the boundary condition, φ = 0 at x = L/2. The solution to this problem will be demonstrated
in the following script. Firstly, setup the parameters.

>>> dx = 0.5
>>> dy = 2.
>>> nx = 10
>>> ny = 1
>>> L = nx * dx

Construct the mesh.

>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx = dx, dy = dy, nx = nx, ny = ny)

Construct a distanceVariable object. This object is required by the distanceEquation.

>>> from fipy.models.levelSet.distanceFunction.distanceVariable import DistanceVariable
>>> var = DistanceVariable(name = ’level set variable’,
... mesh = mesh,
... value = -1.)

85

86 Module examples.levelSet.distanceFunction.circle.input

The domain must be divided into positive and negative regions.

>>> positiveCells = mesh.getCells(filter = lambda cell: cell.getCenter()[0] < L / 2.)
>>> var.setValue(1.,positiveCells)

The distanceEquation is then constructed.

>>> from fipy.models.levelSet.distanceFunction.distanceEquation import DistanceEquation
>>> eqn = DistanceEquation(var)

The problem can then be solved by executing the solve() method of the equation.

>>> if __name__ == ’__main__’:
... from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
... viewer = Grid2DGistViewer(var = var, palette = ’rainbow.gp’,
... minVal = -5., maxVal = 5.)
... viewer.plot()
... eqn.solve()
... viewer.plot()

The result can be tested with the following commands.

>>> eqn.solve()
>>> import Numeric
>>> Numeric.allclose(var,
... Numeric.array((9. * dx / 2., 7. * dx / 2., 5. * dx / 2.,
... 3. * dx / 2., dx / 2., -dx / 2., -3. * dx / 2., -5. * dx / 2.,
... -7. * dx / 2., -9. * dx / 2.)))
1

8.2 Module examples.levelSet.distanceFunction.circle.input

Here we solve the level set equation in two dimensions for a circle. The 2D level set equation can
be written,

|∇φ| = 1

and the boundary condition for a circle is given by, φ = 0 at (x−L/2)2 +(y−L/2)2 = (L/4)2. The
solution to this problem will be demonstrated in the following script. Firstly, setup the parameters.

>>> dx = 1.
>>> dy = 1.
>>> nx = 11
>>> ny = 11
>>> Lx = nx * dx
>>> Ly = ny * dy

Construct the mesh.

>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx = dx, dy = dy, nx = nx, ny = ny)

87

Construct a distanceVariable object. This object is required by the distanceEquation.

>>> from fipy.models.levelSet.distanceFunction.distanceVariable import DistanceVariable
>>> var = DistanceVariable(name = ’level set variable’,
... mesh = mesh,
... value = -1.)

The domain must be divided into positive and negative regions.

>>> positiveCells = mesh.getCells(filter = lambda cell:
... (cell.getCenter()[0] - Lx / 2.)**2 +
... (cell.getCenter()[1] - Ly / 2.)**2 <
... (Lx / 4.)**2)
>>> var.setValue(1.,positiveCells)

The distanceEquation is then constructed.

>>> from fipy.models.levelSet.distanceFunction.distanceEquation import DistanceEquation
>>> eqn = DistanceEquation(var)

The problem can then be solved by executing the solve() method of the equation.

>>> if __name__ == ’__main__’:
... from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
... viewer = Grid2DGistViewer(var = var, palette = ’rainbow.gp’, minVal = -5., maxVal = 5.)
... viewer.plot()
... eqn.solve()
... viewer.plot()

The result can be tested with the following commands.

>>> eqn.solve()
>>> dY = dy / 2.
>>> dX = dx / 2.
>>> mm = min (dX, dY)
>>> import Numeric
>>> m1 = dY * dX / Numeric.sqrt(dY**2 + dX**2)
>>> def evalCell(phix, phiy, dx, dy):
... aa = dy**2 + dx**2
... bb = -2 * (phix * dy**2 + phiy * dx**2)
... cc = dy**2 * phix**2 + dx**2 * phiy**2 - dx**2 * dy**2
... sqr = Numeric.sqrt(bb**2 - 4. * aa * cc)
... return ((-bb - sqr) / 2. / aa, (-bb + sqr) / 2. / aa)
>>> v1 = evalCell(-dY, -m1, dx, dy)[0]
>>> v2 = evalCell(-m1, -dX, dx, dy)[0]
>>> v3 = evalCell(m1, m1, dx, dy)[1]
>>> v4 = evalCell(v3, dY, dx, dy)[1]
>>> v5 = evalCell(dX, v3, dx, dy)[1]
>>> import MA
>>> trialValues = MA.masked_values((
... -1000, -1000, -1000, -1000, -1000, -1000, -1000, -1000, -1000, -1000, -1000,

88 Module examples.levelSet.advection.mesh1D.input

... -1000, -1000, -1000, -1000, -3*dY, -3*dY, -3*dY, -1000, -1000, -1000, -1000,

... -1000, -1000, -1000, v1 , -dY , -dY , -dY , v1 , -1000, -1000, -1000,

... -1000, -1000, v2 , -m1 , m1 , dY , m1 , -m1 , v2 , -1000, -1000,

... -1000, -dX*3, -dX , m1 , v3 , v4 , v3 , m1 , -dX , -dX*3, -1000,

... -1000, -dX*3, -dX , dX , v5 , -1000, v5 , dX , -dX , -dX*3, -1000,

... -1000, -dX*3, -dX , m1 , v3 , v4 , v3 , m1 , -dX , -dX*3, -1000,

... -1000, -1000, v2 , -m1 , m1 , dY , m1 , -m1 , v2 , -1000, -1000,

... -1000, -1000, -1000, v1 , -dY , -dY , -dY , v1 , -1000, -1000, -1000,

... -1000, -1000, -1000, -1000, -3*dY, -3*dY, -3*dY, -1000, -1000, -1000, -1000,

... -1000, -1000, -1000, -1000, -1000, -1000, -1000, -1000, -1000, -1000, -1000),

... -1000)
>>> MA.allclose(var, trialValues)
1

8.3 Module examples.levelSet.advection.mesh1D.input

This example first solves the distance function equation in one dimension:

|∇φ| = 1

with φ = 0 at x = L/5. The variable is then advected with,

∂φ

∂t
+ ~u · ∇φ = 0

The scheme used in the AdvectionTerm preserves the var as a distance function.

The solution to this problem will be demonstrated in the following script. Firstly, setup the pa-
rameters.

>>> velocity = 1.
>>> dx = 1.
>>> dy = 1.
>>> nx = 10
>>> ny = 1
>>> timeStepDuration = 1.
>>> steps = 2
>>> L = nx * dx
>>> interfacePosition = L / 5.

Construct the mesh.

>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx = dx, dy = dy, nx = nx, ny = ny)

Construct a distanceVariable object. This object is required by the distanceEquation.

>>> from fipy.models.levelSet.distanceFunction.distanceVariable import DistanceVariable
>>> var = DistanceVariable(name = ’level set variable’,

89

... mesh = mesh,

... value = -1.)

The domain must be divided into positive and negative regions.

>>> var.setValue(1., mesh.getCells(filter = lambda cell:
... cell.getCenter()[0] > interfacePosition))

The distanceEquation is then constructed.

>>> from fipy.models.levelSet.distanceFunction.distanceEquation import DistanceEquation
>>> disEqn = DistanceEquation(var)

The advectionEquation is constructed.

>>> from fipy.models.levelSet.advection.advectionEquation import AdvectionEquation
>>> advEqn = AdvectionEquation(var, advectionCoeff = velocity)

An Iterator object is constructed.

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator((advEqn,))

The problem can then be solved by executing a serious of time steps.

>>> if __name__ == ’__main__’:
... from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
... viewer = Grid2DGistViewer(var = var, palette = ’rainbow.gp’, minVal = -10., maxVal = 10.)
... viewer.plot()
... disEqn.solve()
... for step in range(steps):
... it.timestep(dt = timeStepDuration)
... viewer.plot()

The result can be tested with the following code:

>>> disEqn.solve()
>>> for step in range(steps):
... it.timestep(dt = timeStepDuration)
>>> import Numeric
>>> x = Numeric.array(mesh.getCellCenters()[:,0])
>>> distanceTravelled = timeStepDuration * steps * velocity
>>> answer = x - interfacePosition - timeStepDuration * steps * velocity
>>> answer = Numeric.where(x < distanceTravelled, x[0] - interfacePosition, answer)
>>> Numeric.allclose(answer, Numeric.array(var), atol = 1e-10)
1

90 Module examples.levelSet.advection.circle.input

8.4 Module examples.levelSet.advection.circle.input

This example first imposes a circular distance function:

φ (x, y) =

[(
x− L

2

)2

+
(
y − L

2

)2
]1/2

− L

4

The variable is advected with,
∂φ

∂t
+ ~u · ∇φ = 0

The scheme used in the AdvectionTerm preserves the var as a distance function. The solution to
this problem will be demonstrated in the following script. Firstly, setup the parameters.

>>> L = 1.
>>> nx = 25
>>> velocity = 1.
>>> cfl = 0.1
>>> velocity = 1.
>>> distanceToTravel = L / 10.
>>> radius = L / 4.
>>> dx = L / nx
>>> timeStepDuration = cfl * dx / velocity
>>> steps = int(distanceToTravel / dx / cfl)

Construct the mesh.

>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx = dx, dy = dx, nx = nx, ny = nx)

Construct a distanceVariable object.

>>> from fipy.models.levelSet.distanceFunction.distanceVariable import DistanceVariable
>>> var = DistanceVariable(
... name = ’level set variable’,
... mesh = mesh,
... value = 1.)

Initialise the distanceVariable to be a circular distance function.

>>> import Numeric
>>> initialArray = Numeric.sqrt((mesh.getCellCenters()[:,0] - L / 2.)**2 +
... (mesh.getCellCenters()[:,1] - L / 2.)**2) - radius
>>> var.setValue(initialArray)

The advectionEquation is constructed.

>>> from fipy.models.levelSet.advection.advectionEquation import AdvectionEquation
>>> advEqn = AdvectionEquation(
... var,
... advectionCoeff = velocity)

91

An Iterator object is constructed.

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator((advEqn,))

The problem can then be solved by executing a serious of time steps.

>>> if __name__ == ’__main__’:
... from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
... viewer = Grid2DGistViewer(var = var, palette = ’rainbow.gp’, minVal = -radius,
... maxVal = radius)
... viewer.plot()
... for step in range(steps):
... it.timestep(dt = timeStepDuration)
... viewer.plot()

The result can be tested with the following commands.

>>> for step in range(steps):
... it.timestep(dt = timeStepDuration)
>>> x = Numeric.array(mesh.getCellCenters())
>>> distanceTravelled = timeStepDuration * steps * velocity
>>> answer = initialArray - distanceTravelled
>>> answer = Numeric.where(answer < 0., -1001., answer)
>>> solution = Numeric.where(answer < 0., -1001., Numeric.array(var))
>>> Numeric.allclose(answer, solution, atol = 4.7e-3)
1

If the AdvectionEquation is built with the HigherOrderAdvectionTerm the result is more accurate,

>>> var.setValue(initialArray)
>>> from fipy.models.levelSet.advection.higherOrderAdvectionEquation import HigherOrderAdvectionEquation
>>> advEqn = HigherOrderAdvectionEquation(
... var,
... advectionCoeff = velocity)
>>> it = Iterator((advEqn,))
>>> for step in range(steps):
... it.timestep(dt = timeStepDuration)
>>> solution = Numeric.where(answer < 0., -1001., Numeric.array(var))
>>> Numeric.allclose(answer, solution, atol = 1.02e-3)
1

92 Module examples.levelSet.electroChem.input

Superconformal Electrodeposition Example

Electroplating is a deposition method widely used to fill high-aspect ratio features without seams
or voids through the process of superconformal deposition, also called “superfill.” This process has
been demonstrated to depend critically on the inclusion of additives in the electrolyte. Recent publi-
cations propose “Curvature Enhanced Accelerator Coverage” (CEAC) as the mechanism behind the
superfilling process [4]. In this mechanism, molecules that accelerate local metal deposition displace
molecules that inhibit local metal deposition on the metal/electrolyte interface. For electrolytes
that yield superconformal filling of fine features, this buildup happens relatively slowly because the
concentration of accelerator species is much more dilute compared to the inhibitor species in the
electrolyte. The mechanism that leads to the increased rate of metal deposition along the bottom
of the filling trench is the concurrent local increase of the accelerator coverage due to decreasing
local surface area, which scales with the local curvature (hence the name of the mechanism).

8.5 Module examples.levelSet.electroChem.input

This input file is a demonstration of the use of FiPy for modeling copper electroplating. The
material properties and experimental parameters used are roughly those that have been previously
published [17]. To run this example from the base fipy directory type:

$ examples/diffusion/steadyState/mesh1D/input.py

at the command line. The simulation took about 5 minutes on a computer with a 2GHz Athlon
CPU. The results of the simulation will be displayed and the word finished in the terminal at the
end of the simulation. The Gist package is required to view the results as the simulation is being
executed (see the installation guide in chapter 2). The following is an explicit explanation of the
input commands required to set up and run the problem. At the top of the file all the parameter
values are set. Their use will be explained during the instantiation of various objects.

The following parameters (all in S.I. units) represent,

physical constants,

>>> faradaysConstant = 9.6e4
>>> gasConstant = 8.314
>>> transferCoefficient = 0.5

properties associated with the accelerator species,

>>> rateConstant = 1.76
>>> overpotentialDependence = -245e-6
>>> acceleratorDiffusionCoefficient = 1e-9
>>> siteDensity = 9.8e-6

properties of the cupric ions,

>>> atomicVolume = 7.1e-6,
>>> charge = 2
>>> metalDiffusionCoefficient = 5.6e-10

93

parameters dependent on experimental constraints,

>>> temperature = 298.
>>> overpotential = -0.3
>>> bulkMetalConcentration = 250.
>>> bulkAcceleratorConcentration = 5e-3
>>> initialAcceleratorCoverage = 0.

parameters obtained from experiments on flat copper electrodes,

>>> constantCurrentDensity = 0.26
>>> acceleratorDependenceCurrentDensity = 45.

general simulation control parameters,

>>> numberOfSteps = 300
>>> cflNumber = 0.2
>>> numberOfCellsInNarrowBand = 10
>>> cellsBelowTrench = 10
>>> cellSize = 0.1e-7

parameters required for a trench geometry,

>>> trenchDepth = 0.5e-6
>>> aspectRatio = 2.
>>> trenchSpacing = 0.6e-6
>>> boundaryLayerDepth = 0.3e-6

The hydrodynamic boundary layer depth (boundaryLayerDepth) is intentionally small in this ex-
ample to keep the mesh at a reasonable size.

Build the mesh:

>>> yCells = cellsBelowTrench + int((trenchDepth + boundaryLayerDepth) / cellSize)
>>> xCells = int(trenchSpacing / 2 / cellSize)
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx = cellSize,
... dy = cellSize,
... nx = xCells,
... ny = yCells)

A distanceVariable object, φ, is required to store the position of the interface (at φ = 0). A
distanceEquation object is used to solve the distanceVariable so that it has the value of a
distance function (i.e. holds the distance at any point in the mesh from the electrolyte/metal
interface). The distanceEquation object solves the equation |∇φ| = 1.

Firstly, create the φ variable:

>>> from fipy.models.levelSet.distanceFunction.distanceVariable import DistanceVariable
>>> distanceVar = DistanceVariable(
... name = ’distance variable’,
... mesh = mesh,
... value = -1.)

94 Module examples.levelSet.electroChem.input

This is initially set to -1 everywhere. The electrolyte region will be the positive region of the
domain while the metal region will be negative. Create a function for returning cells that lie in the
electrolyte region (positive region).

>>> bottomHeight = cellsBelowTrench * cellSize
>>> trenchHeight = bottomHeight + trenchDepth
>>> trenchWidth = trenchDepth / aspectRatio
>>> sideWidth = (trenchSpacing - trenchWidth) / 2
>>> def electrolyteFunc(cell):
... x,y = cell.getCenter()
... if y > trenchHeight:
... return 1
... elif y < bottomHeight:
... return 0
... elif x < sideWidth:
... return 0
... else:
... return 1

Get the positive cells by passing the function,

>>> electrolyteCells = mesh.getCells(electrolyteFunc)

and set those cells to have a positive value

>>> distanceVar.setValue(1., electrolyteCells)

Next set up the distanceEquation and solve to set φ to be a distance function.

>>> terminationValue = numberOfCellsInNarrowBand / 2 * cellSize
>>> from fipy.models.levelSet.distanceFunction.distanceEquation import DistanceEquation
>>> distanceEquation = DistanceEquation(distanceVar, terminationValue = terminationValue)
>>> distanceEquation.solve(terminationValue = 1e+10)

The distanceVariable has now been created to mark the interface. Some other variables need
to be created that govern the concentrations of various species. Create the accelerator surfactant
coverage, θ, variable. This variable influences the deposition rate.

>>> from fipy.models.levelSet.surfactant.surfactantVariable import SurfactantVariable
>>> acceleratorVar = SurfactantVariable(
... name = "accelerator variable",
... value = initialAcceleratorCoverage,
... distanceVar = distanceVar)

Create the bulk accelerator concentration, cθ, in the electrolyte,

>>> from fipy.variables.cellVariable import CellVariable
>>> bulkAcceleratorVar = CellVariable(
... name = ’bulk accelerator variable’,
... mesh = mesh,
... value = bulkAcceleratorConcentration)

95

Create the bulk metal ion concentration, cm, in the electrolyte.

>>> from fipy.variables.cellVariable import CellVariable
>>> metalVar = CellVariable(
... name = ’metal variable’,
... mesh = mesh,
... value = bulkMetalConcentration)

The following commands build the depositionRateVariable, v. The depositionRateVariable
is given by the following equation.

v =
iΩ
nF

where Ω is the metal atomic volume, n is the metal ion charge and F is Faraday’s constant. The
current density is given by

i = i0
cim
c∞m

exp
(
−αF
RT

η

)

where cim is the metal ion concentration in the bulk at the interface, c∞m is the far-field bulk
concentration of metal ions, α is the transfer coefficient, R is the gas constant, T is the temperature
and η is the overpotential. The exchange current density is an empirical function of accelerator
coverage,

i0(θ) = b0 + b1θ

The commands needed to build this equation are,

>>> expoConstant = -transferCoefficient * faradaysConstant / gasConstant / temperature
>>> tmp = acceleratorDependenceCurrentDensity * acceleratorVar.getInterfaceVar()
>>> exchangeCurrentDensity = constantCurrentDensity + tmp
>>> import Numeric
>>> expo = Numeric.exp(expoConstant * overpotential)
>>> currentDensity = exchangeCurrentDensity * metalVar / bulkMetalConcentration * expo
>>> depositionRateVariable = currentDensity * atomicVolume / charge / faradaysConstant

Build the extension velocity variable vext. The extension velocity uses the extensionEquation to
spread the velocity at the interface to the rest of the domain.

>>> extensionVelocityVariable = CellVariable(
... name = ’extension velocity’,
... mesh = mesh,
... value = depositionRateVariable)

Using the variables created above the governing equations will be built. The governing equation
for surfactant conservation is given by,

θ̇ = Jvθ + kciθ(1− θ)

96 Module examples.levelSet.electroChem.input

where θ is the coverage of accelerator at the interface, J is the curvature of the interface, v is the
normal velocity of the interface, ciθ is the concentration of accelerator in the bulk at the interface.
The value k is given by an empirical function of overpotential,

k = k0 + k3η
3

The above equation is represented by the AdsorbingSurfactantEquation in FiPy:

>>> from fipy.models.levelSet.surfactant.adsorbingSurfactantEquation \
... import AdsorbingSurfactantEquation
>>> surfactantEquation = AdsorbingSurfactantEquation(
... acceleratorVar,
... distanceVar,
... bulkAcceleratorConcentration,
... rateConstant + overpotentialDependence * overpotential**3)

The variable φ is advected by the advectionEquation given by,

∂φ

∂t
+ vext|∇φ| = 0

and is set up with the following commands:

>>> from fipy.models.levelSet.advection.higherOrderAdvectionEquation \
... import HigherOrderAdvectionEquation
>>> advectionEquation = HigherOrderAdvectionEquation(
... distanceVar,
... advectionCoeff = extensionVelocityVariable)

The extensionEquation extends the interface velocity v to vext throughout the whole domain using
∇φ · ∇vext = 0. The extensionEquation is set up with the following commands.

>>> from fipy.models.levelSet.distanceFunction.extensionEquation import ExtensionEquation
>>> extensionEquation = ExtensionEquation(
... distanceVar,
... extensionVelocityVariable,
... terminationValue = terminationValue)

The diffusion of metal ions from the far field to the interface is governed by,

∂cm
∂t

= ∇ ·D∇cm

where,

D =

Dm when φ > 0,

0 when φ ≤ 0

The following boundary condition applies at φ = 0,

97

Dn̂ · ∇c =
v

Ω
.

The MetalIonDiffusionEquation is set up with the following commands.

>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> from fipy.models.levelSet.electroChem.metalIonDiffusionEquation \
... import MetalIonDiffusionEquation
>>> metalEquation = MetalIonDiffusionEquation(
... metalVar,
... distanceVar = distanceVar,
... depositionRate = depositionRateVariable,
... diffusionCoeff = metalDiffusionCoefficient,
... metalIonAtomicVolume = atomicVolume,
... boundaryConditions = (
... FixedValue(
... mesh.getFacesTop(),
... bulkMetalConcentration
...),
...)
...)

The SurfactantBulkDiffusionEquation solves the bulk diffusion of a species with a source term
for the jump from the bulk to an interface. The governing equation is given by,

∂c

∂t
= ∇ ·D∇c

where,

D =

Dθ when φ > 0

0 when φ ≤ 0

The jump condition at the interface is defined by Langmuir adsorption. Langmuir adsorption essen-
tially states that the ability for a species to jump from an electrolyte to an interface is proportional
to the concentration in the electrolyte, available site density and a jump coefficient. The boundary
condition at φ = 0 is given by,

Dn̂ · ∇c = −kc(1− θ).

The SurfactantBulkDiffusionEquation is set up with the following commands.

>>> from fipy.models.levelSet.surfactant.surfactantBulkDiffusionEquation \
... import SurfactantBulkDiffusionEquation
>>> bulkAcceleratorEquation = SurfactantBulkDiffusionEquation(
... bulkAcceleratorVar,
... distanceVar = distanceVar,
... surfactantVar = acceleratorVar,
... diffusionCoeff = acceleratorDiffusionCoefficient,
... rateConstant = rateConstant * siteDensity,

98 Module examples.levelSet.electroChem.input

... boundaryConditions = (

... FixedValue(

... mesh.getFacesTop(),

... bulkAcceleratorConcentration

...),

...)

...)

The equations are now given to an Iterator object in the order that they will be solved.

>>> from fipy.iterators.iterator import Iterator
>>> iterator = Iterator((extensionEquation,
... advectionEquation,
... surfactantEquation,
... metalEquation,
... bulkAcceleratorEquation))

The function below is constructed to encapsulate the creation of the viewers.

>>> def buildViewers():
... from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
... resolution = 3
... cells = yCells * 2**(resolution-1)
... return (
... Grid2DGistViewer(
... var = distanceVar,
... minVal = -1e-8,
... maxVal = 1e-8,
... grid = 0,
... limits = (0, cells, 0, cells),
... dpi = 100,
... resolution = resolution),
... Grid2DGistViewer(
... var = acceleratorVar.getInterfaceVar(),
... grid = 0,
... limits = (0, cells, 0, cells),
... dpi = 100,
... resolution = resolution))

The levelSetUpdateFrequency defines how often to call the distanceEquation to reinitialize the
distanceVariable to a distance function.

>>> levelSetUpdateFrequency = int(0.8 * terminationValue / cellSize / cflNumber)

The following loop runs for numberOfSteps time steps. The time step is calculated with the CFL
number and the maximum extension velocity.

>>> if __name__ == ’__main__’:
... viewers = buildViewers()
... for step in range(numberOfSteps):

99

... if step % levelSetUpdateFrequency == 0:

... distanceEquation.solve()

... extensionVelocityVariable.setValue(Numeric.array(depositionRateVariable))

... argmax = Numeric.argmax(extensionVelocityVariable)

... iterator.timestep(dt = cflNumber * cellSize / extensionVelocityVariable[argmax])

... for viewer in viewers:

... viewer.plot()

... raw_input(’finished’)

The following is a short test case. It uses saved data from a simulation with 5 time steps. It is not
a test for accuracy but a way to tell if something has changed or been broken.

>>> for i in range(5):
... iterator.timestep(dt = 0.1)

>>> import os
>>> testFile = ’test.gz’
>>> import examples.levelSet.electroChem
>>> gzfile = ’gunzip --fast -c < %s/%s’
>>> gzfile = gzfile%(examples.levelSet.electroChem.__path__[0], testFile)
>>> filestream=os.popen(gzfile,’r’)
>>> import cPickle
>>> testData = cPickle.load(filestream)
>>> filestream.close()

>>> Numeric.allclose(Numeric.array(acceleratorVar), testData)
1

100 Module examples.levelSet.electroChem.input

Chapter 9

Cahn-Hilliard Examples

9.1 Module examples.cahnHilliard.inputTanh1D

This example solves the Cahn-Hilliard equation given by:

∂φ

∂t
= ∇ ·D∇

(
∂f

∂φ
− ε2∇2φ

)
where the free energy functional is given by,

f =
a2

2
φ2(1− φ)2.

We solve the problem on a 1D mesh

>>> L = 40.
>>> nx = 10000
>>> ny = 1
>>> dx = L / nx
>>> dy = 1.
>>> from fipy.meshes.grid2D import Grid2D
>>> mesh = Grid2D(dx, dy, nx, ny)

and create the solution variable

>>> from fipy.variables.cellVariable import CellVariable
>>> var = CellVariable(
... name = "phase field",
... mesh = mesh,
... value = 1)
>>> var.setValue(1, cells = mesh.getCells(lambda cell: cell.getCenter()[0] > L / 2))

101

102 Module examples.cahnHilliard.inputTanh1D

The boundary conditions for this problem are

φ =
1
2

∂3φ

∂x3
= 0

 on x = 0

and

φ = 1

∂2φ

∂x2
= 0

 on x = L

or

>>> from fipy.boundaryConditions.fixedValue import FixedValue
>>> from fipy.boundaryConditions.nthOrderBoundaryCondition \
... import NthOrderBoundaryCondition
>>> boundaryConditions = (
... FixedValue(mesh.getFacesRight(), 1),
... FixedValue(mesh.getFacesLeft(), .5),
... NthOrderBoundaryCondition(mesh.getFacesLeft(), 0, 2),
... NthOrderBoundaryCondition(mesh.getFacesRight(), 0, 3))

Using

>>> parameters={
... ’asq’ : 1.0,
... ’epsilon’ : 1,
... ’diffusionCoeff’ : 1
... }

we create the Cahn-Hilliard equation object

>>> from fipy.solvers.linearLUSolver import LinearLUSolver
>>> from fipy.models.cahnHilliard.cahnHilliardEquation import CahnHilliardEquation
>>> eqch= CahnHilliardEquation(
... var,
... parameters = parameters,
... solver = LinearLUSolver(
... tolerance = 1e-15,
... steps = 100),
... boundaryConditions = boundaryConditions
...)

The solution to this 1D problem over an infinite domain is given by,

φ(x) =
1

1 + exp
(
−a

εx
)

or

103

>>> import Numeric
>>> a = Numeric.sqrt(parameters[’asq’])
>>> answer = 1 / (1 +
... Numeric.exp(-a * (mesh.getCellCenters()[:,0] - L / 2) / parameters[’epsilon’]))

If we are running interactively, we create a viewer to see the results

>>> if __name__ == ’__main__’:
... from fipy.viewers.grid2DGistViewer import Grid2DGistViewer
... viewer = Grid2DGistViewer(var, minVal=0., maxVal=1.0, palette = ’rainbow.gp’)
... viewer.plot()

We iterate the solution to equilibrium and, if we are running interactively, we update the display
and output data about the progression of the solution

>>> from fipy.iterators.iterator import Iterator
>>> it = Iterator((eqch,))
>>> dexp=-5
>>> for step in range(100):
... dt = Numeric.exp(dexp)
... dt = min(10,dt)
... dexp += 0.5
... it.timestep(dt = dt)
... if __name__ == ’__main__’:
... diff = abs(answer - Numeric.array(var))
... maxarg = Numeric.argmax(diff)
... print ’maximum error:’,diff[maxarg]
... print ’element id:’,maxarg
... print ’value at element ’,maxarg,’ is ’,var[maxarg]
...
... viewer.plot()

We compare the analytical solution with the numerical result,

>>> Numeric.allclose(var, answer, atol = 1e-2)
1
>>> Numeric.allclose(var, answer, atol = 1e-3)
1
>>> Numeric.allclose(var, answer, atol = 1e-4)
0
>>> Numeric.allclose(var, answer, atol = 1e-5)
0

104 Module examples.cahnHilliard.inputTanh1D

Bibliography

105

BIBLIOGRAPHY 107

[1] The Python Programming Language, URL http://www.python.org/. 5

[2] W. J. Boettinger, J. A. Warren, C. Beckermann, and A. Karma, “Phase-field sim-
ulation of solidification”. Annual Review of Materials Research, 32, (2002) 163–
194, URL http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.matsci.
32.101901.155803. 5

[3] G. B. McFadden, “Phase-field models of solidification”. Contemporary Mathematics, 306,
(2002) 107–145. 5

[4] D. Josell, D. Wheeler, W. H. Huber, and T. P. Moffat, “Superconformal Electrodeposition in
Submicron Features”. Physical Review Letters, 87(1), (2001) 016102, URL http://link.aps.
org/abstract/PRL/v87/e016102. 5, 92

[5] Greg Ward, Installing Python Modules. URL http://docs.python.org/inst/. 9

[6] Guido van Rossum, Python Tutorial. URL http://docs.python.org/tut/. 14

[7] T. N. Croft, Unstructured Mesh - Finite Volume Algorithms for Swirling, Turbulent React-
ing Flows. Ph.D. thesis, University of Greenwich, 1998, URL http://www.gre.ac.uk/~ct02/
research/thesis/main.html. 17, 20

[8] S. V. Patanker, Numerical Heat Transfer and Fluid Flow. Taylor and Francis, 1980. 17

[9] H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics. Long-
man Scientific and Technical, 1995. 17

[10] John W. Cahn and John E. Hilliard, “Free energy of a nonuniform system. I. Interfacial free
energy”. Journal of Computational Physics, 28(2), (1958) 258–267. 18

[11] John W. Cahn, “Free energy of a nonuniform system. II. Thermodynamic basis”. Journal of
Computational Physics, 30(5), (1959) 1121–1124. 18

[12] John W. Cahn and John E. Hilliard, “Free energy of a nonuniform system. III. Nucleation
in a two-component incompressible fluid”. Journal of Computational Physics, 31(3), (1959)
688–699. 18

[13] James A. Warren, Ryo Kobayashi, Alexander E. Lobkovsky, and W. Craig Carter, “Extending
Phase Field Models of Solidification to Polycrystalline Materials”. Acta Materialia, 51(20),
(2003) 6035–6058, URL http://dx.doi.org/10.1016/S1359-6454(03)00388-4. 57

[14] J. E. Guyer, W. J. Boettinger, J. A. Warren, and G. B. McFadden, “Phase field modeling of
electrochemistry I: Equilibrium”. Physical Review E, 69, (2004) 021603, cond-mat/0308173,
URL http://link.aps.org/abstract/PRE/v69/e021603. 72

[15] J. E. Guyer, W. J. Boettinger, J. A. Warren, and G. B. McFadden, “Phase field modeling
of electrochemistry II: Kinetics”. Physical Review E, 69, (2004) 021604, cond-mat/0308179,
URL http://link.aps.org/abstract/PRE/v69/e021604. 72

[16] J. A. Sethian, Level Set Methods and Fast Marching Methods. Cambridge University Press,
1996. 85

http://www.python.org/
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.matsci.32.101901.155803
http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.matsci.32.101901.155803
http://link.aps.org/abstract/PRL/v87/e016102
http://link.aps.org/abstract/PRL/v87/e016102
http://docs.python.org/inst/
http://docs.python.org/tut/
http://www.gre.ac.uk/~ct02/research/thesis/main.html
http://www.gre.ac.uk/~ct02/research/thesis/main.html
http://dx.doi.org/10.1016/S1359-6454(03)00388-4
http://www.arXiv.org/abs/cond-mat/0308173
http://link.aps.org/abstract/PRE/v69/e021603
http://www.arXiv.org/abs/cond-mat/0308179
http://link.aps.org/abstract/PRE/v69/e021604

108 BIBLIOGRAPHY

[17] D. Wheeler, D. Josell, and T. P. Moffat, “Modeling Superconformal Electrodeposition Using
The Level Set Method”. Journal of The Electrochemical Society, 150(5), (2003) C302–C310.
92

Index

blitz, 28
BoundaryCondition class, 29

Cell class, 29
CellVariable class, 29

doctest, 28

Equation class, 28–30
examples.cahnHilliard.inputTanh1D (module),

101–103
examples.convection.exponential1D.input (mod-

ule), 51–53
examples.convection.exponential1DSource.input

(module), 53–55
examples.diffusion.explicit.mesh10.input (mod-

ule), 41–43
examples.diffusion.nthOrder.input2ndOrder1D

(module), 45–47
examples.diffusion.nthOrder.input4thOrder1D

(module), 47–49
examples.diffusion.steadyState.mesh1D.input (mod-

ule), 37–40
examples.diffusion.steadyState.mesh20x20.input

(module), 40–41
examples.diffusion.variable.mesh10x1.input (mod-

ule), 43–45
examples.elphf.diffusion.input1D (module), 74–

76
examples.elphf.diffusion.input1Ddimensional (mod-

ule), 76–78
examples.elphf.phase.input1D (module), 72–

74
examples.elphf.phaseDiffusion.input1Dbinary (mod-

ule), 80–82
examples.elphf.phaseDiffusion.input1DternaryAndElectrons

(module), 82–84
examples.elphf.poisson.input1DrightCharge (mod-

ule), 78–80
examples.levelSet.advection.circle.input (mod-

ule), 89–91

examples.levelSet.advection.mesh1D.input (mod-
ule), 88–89

examples.levelSet.distanceFunction.circle.input
(module), 86–88

examples.levelSet.distanceFunction.oneD.input
(module), 85–86

examples.levelSet.electroChem.input (module),
92–99

examples.phase.anisotropy.input (module), 57–
61

examples.phase.impingement.mesh20x20.base
(module), 64–68

script (function), 68
examples.phase.impingement.mesh20x20.input

(module), 68–69
examples.phase.impingement.mesh40x1.input

(module), 61–64
examples.phase.impingement.restart.input (mod-

ule), 69–71

Face class, 29

Iterator class, 30

Mesh class, 18, 28, 29

Numeric, 28

PyRex, 28
PySparse, 28
Python, 21, 28

Scientific Python, 28
SciPy, 28
Solver class, 30
SparseMatrix class, 29, 30

Term class, 29

unittest, 28

Variable class, 28–30
Vertex class, 29

109

110 INDEX

Viewer class, 30

weave, 28

Contributors

Jon Guyer is a member of the research staff of the Metallurgy Division in the Materials Science
and Engineering Laboratory at the National Institute of Standards and Technology. Jon’s
computational interests are in object-oriented design and in phase field modeling of electro-
chemistry.

Daniel Wheeler is a caveman. Daniel’s interests are in numerical modeling, finite volume tech-
niques, and level set treatments.

Jim Warren is a member of the research staff of the Metallurgy Division and the Director of
the Center for Theoretical and Computational Materials Science of the Materials Science
and Engineering Laboratory at the National Institute of Standards and Technology. Jim
is interested in a variety of problems, including the phase field modeling of solidification,
polycrystalline solids, and the electrochemical interface.

Alex Mont is a student at Montgomery Blair High School. Alex developed the PyxViewer and
the Gmsh import and export modules.

111

http://www.nist.gov/cgi-bin/wwwph/cso.nist.gov?Query=Jonathan+Guyer
http://www.metallurgy.nist.gov/
http://www.msel.nist.gov/
http://www.msel.nist.gov/
http://www.nist.gov/
http://www.nist.gov/cgi-bin/wwwph/cso.nist.gov?Query=Daniel+Wheeler
http://www.ctcms.nist.gov/~jwarren/
http://www.metallurgy.nist.gov/
http://www.ctcms.nist.gov/
http://www.msel.nist.gov/
http://www.msel.nist.gov/
http://www.nist.gov/
http://www.mbhs.edu/

	Contents
	I Introduction
	Overview
	Download and Installation
	Support
	Conventions and Notation

	Installation and Usage
	Privileges
	Prerequisites
	Operating System
	Required Packages
	Python
	Numeric
	PySparse

	Recommended Packages
	SciPy
	gmsh

	Viewers
	Pygist
	PyX
	Gnuplot-py

	Obtaining FiPy
	Manual

	Testing FiPy
	Installing FiPy
	Using FiPy
	CVS tags

	Theoretical and Numerical Background
	General Conservation Equation
	Finite Volume Method
	Cell Centered FVM (CC-FVM)
	Vertex Centered FVM (VC-FVM)

	Discretization
	Transient Term
	Convection Term
	Diffusion Term
	Source Term

	Linear Equations
	Numerical Schemes

	Design and Implementation
	Design
	Numerical Approach
	Object Oriented Structure
	Test Based Development
	Open Source
	High-Level Scripting Language
	Python Programming Language

	Implementation

	II Examples
	Diffusion Examples
	Module examples.diffusion.steadyState.mesh1D.input
	Module examples.diffusion.steadyState.mesh20x20.input
	Module examples.diffusion.explicit.mesh10.input
	Module examples.diffusion.variable.mesh10x1.input
	Module examples.diffusion.nthOrder.input2ndOrder1D
	Module examples.diffusion.nthOrder.input4thOrder1D

	Convection Examples
	Module examples.convection.exponential1D.input
	Module examples.convection.exponential1DSource.input

	Phase Field Examples
	Solidification Examples
	Module examples.phase.anisotropy.input
	Module examples.phase.impingement.mesh40x1.input
	Module examples.phase.impingement.mesh20x20.base
	Functions

	Module examples.phase.impingement.mesh20x20.input
	Module examples.phase.impingement.restart.input
	Electrochemistry Examples
	Module examples.elphf.phase.input1D
	Module examples.elphf.diffusion.input1D
	Module examples.elphf.diffusion.input1Ddimensional
	Module examples.elphf.poisson.input1DrightCharge
	Module examples.elphf.phaseDiffusion.input1Dbinary
	Module examples.elphf.phaseDiffusion.input1DternaryAndElectrons

	Level Set Examples
	Module examples.levelSet.distanceFunction.oneD.input
	Module examples.levelSet.distanceFunction.circle.input
	Module examples.levelSet.advection.mesh1D.input
	Module examples.levelSet.advection.circle.input
	Superconformal Electrodeposition Example
	Module examples.levelSet.electroChem.input

	Cahn-Hilliard Examples
	Module examples.cahnHilliard.inputTanh1D

	Bibliography
	Index
	Contributors

